Metaphysics
They should have asked this question also, how relative terms are many and not one. But as it is, they inquire how there are many units besides the first 1, but do not go on to inquire how there are many unequals besides the unequal. Yet they use them and speak of great and small, many and few (from which proceed numbers), long and short (from which proceeds the line), broad and narrow (from which proceeds the plane), deep and shallow (from which proceed solids); and they speak of yet more kinds of relative term. What is the reason, then, why there is a plurality of these?
It is necessary, then, as we say, to presuppose for each thing that which is it potentially; and the holder of these views further declared what that is which is potentially a 'this' and a substance but is not in itself being-viz. that it is the relative (as if he had said 'the qualitative'), which is neither potentially the one or being, nor the negation of the one nor of being, but one among beings. And it was much more necessary, as we said, if he was inquiring how beings are many, not to inquire about those in the same category-how there are many substances or many qualities-but how beings as a whole are many; for some are substances, some modifications, some relations. In the categories other than substance there is yet another problem involved in the existence of plurality. Since they are not separable from substances, qualities and quantities are many just because their substratum becomes and is many; yet there ought to be a matter for each category; only it cannot be separable from substances. But in the case of 'thises', it is possible to explain how the 'this' is many things, unless a thing is to be treated as both a 'this' and a general character. The difficulty arising from the facts about substances is rather this, how there are actually many substances and not one.
But further, if the 'this' and the quantitative are not the same, we are not told how and why the things that are are many, but how quantities are many. For all 'number' means a quantity, and so does the 'unit', unless it means a measure or the quantitatively indivisible. If, then, the quantitative and the 'what' are different, we are not told whence or how the 'what' is many; but if any one says they are the same, he has to face many inconsistencies.
One might fix one's attention also on the question, regarding the numbers, what justifies the belief that they exist. To the believer in Ideas they provide some sort of cause for existing things, since each number is an Idea, and the Idea is to other things somehow or other the cause of their being; for let this supposition be granted them. But as for him who does not hold this view because he sees the inherent objections to the Ideas (so that it is not for this reason that he posits numbers), but who posits mathematical number, why must we believe his statement that such number exists, and of what use is such number to other things? Neither does he who says it exists maintain that it is the cause of anything (he rather says it is a thing existing by itself), nor is it observed to be the cause of anything; for the theorems of arithmeticians will all be found true even of sensible things, as was said before.
As for those, then, who suppose the Ideas to exist and to be numbers, by their assumption in virtue of the method of setting out each term apart from its instances-of the unity of each general term they try at least to explain somehow why number must exist. Since their reasons, however, are neither conclusive nor in themselves possible, one must not, for these reasons at least, assert the existence of number. Again, the Pythagoreans, because they saw many attributes of numbers belonging te sensible bodies, supposed real things to be numbers-not separable numbers, however, but numbers of which real things consist. But why? Because the attributes of numbers are present in a musical scale and in the heavens and in many other things. Those, however, who say that mathematical number alone exists cannot according to their hypotheses say anything of this sort, but it used to be urged that these sensible things could not be the subject of the sciences. But we maintain that they are, as we said before. And it is evident that the objects of mathematics do not exist apart; for if they existed apart their attributes would not have been present in bodies. Now the Pythagoreans in this point are open to no objection; but in that they construct natural bodies out of numbers, things that have lightness and weight out of things that have not weight or lightness, they seem to speak of another heaven and other bodies, not of the sensible. But those who make number separable assume that it both exists and is separable because the axioms would not be true of sensible things, while the statements of mathematics are true and 'greet the soul'; and similarly with the spatial magnitudes of mathematics. It is evident, then, both that the rival theory will say the contrary of this, and that the difficulty we raised just now, why if numbers are in no way present in sensible things their attributes are present in sensible things, has to be solved by those who hold these views.
There are some who, because the point is the limit and extreme of the line, the line of the plane, and the plane of the solid, think there must be real things of this sort. We must therefore examine this argument too, and see whether it is not remarkably weak. For (i) extremes are not substances, but rather all these things are limits. For even walking, and movement in general, has a limit, so that on their theory this will be a 'this' and a substance. But that is absurd. Not but what (ii) even if they are substances, they will all be the substances of the sensible things in this world; for it is to these that the argument applied. Why then should they be capable of existing apart?
Again, if we are not too easily satisfied, we may, regarding all number and the objects of mathematics, press this difficulty, that they contribute nothing to one another, the prior to the posterior; for if number did not exist, none the less spatial magnitudes would exist for those who maintain the existence of the objects of mathematics only, and if spatial magnitudes did not exist, soul and sensible bodies would exist. But the observed facts show that nature is not a series of episodes, like a bad tragedy. As for the believers in the Ideas, this difficulty misses them; for they construct spatial magnitudes out of matter and number, lines out of the number planes doubtless out of solids out of or they use other numbers, which makes no difference. But will these magnitudes be Ideas, or what is their manner of existence, and what do they contribute to things? These contribute nothing, as the objects of mathematics contribute nothing. But not even is any theorem true of them, unless we want to change the objects of mathematics and invent doctrines of our own. But it is not hard to assume any random hypotheses and spin out a long string of conclusions. These thinkers, then, are wrong in this way, in wanting to unite the objects of mathematics with the Ideas. And those who first posited two kinds of number, that of the Forms and that which is mathematical, neither have said nor can say how mathematical number is to exist and of what it is to consist. For they place it between ideal and sensible number. If (i) it consists of the great and small, it will be the same as the other-ideal-number (he makes spatial magnitudes out of some other small and great). And if (ii) he names some other element, he will be making his elements rather many. And if the principle of each of the two kinds of number is a 1, unity will be something common to these, and we must inquire how the one is these many things, while at the same time number, according to him, cannot be generated except from one and an indefinite dyad.
All this is absurd, and conflicts both with itself and with the probabilities, and we seem to see in it Simonides 'long rigmarole' for the long rigmarole comes into play, like those of slaves, when men have nothing sound to say. And the very elements-the great and the small-seem to cry out against the violence that is done to them; for they cannot in any way generate numbers other than those got from 1 by doubling.
It is strange also to attribute generation to things that are eternal, or rather this is one of the things that are impossible. There need be no doubt whether the Pythagoreans attribute generation to them or not; for they say plainly that when the one had been constructed, whether out of planes or of surface or of seed or of elements which they cannot express, immediately the nearest part of the unlimited began to be constrained and limited by
the limit. But since they are constructing a world and wish to speak the language of natural science, it is fair to make some examination of their physical theorics, but to let them off from the present inquiry; for we are investigating the principles at work in unchangeable things, so that it is numbers of this kind whose genesis we must study.
These thinkers say there is no generation of the odd number, which evidently implies that there is generation of the even; and some present the even as produced first from unequals-the great and the small-when these are equalized. The inequality, then, must belong to them before they are equalized. If they had always been equalized, they would not have been unequal before; for there is nothing before that which is always. Therefore evidently they are not giving their account of the generation of numbers merely to assist contemplation of their nature.
A difficulty, and a reproach to any one who finds it no difficulty, are contained in the question how the elements and the principles are related to the good and the beautiful; the difficulty is this, whether any of the elements is such a thing as we mean by the good itself and the best, or this is not so, but these are later in origin than the elements. The theologians seem to agree with some thinkers of the present day, who answer the question in the negative, and say that both the good and the beautiful appear in the nature of things only when that nature has made some progress. (This they do to avoid a real objection which confronts those who say, as some do, that the one is a first principle. The objection arises not from their ascribing goodness to the first principle as an attribute, but from their making the one a principle-and a principle in the sense of an element-and generating number from the one.) The old poets agree with this inasmuch as they say that not those who are first in time, e.g. Night and Heaven or Chaos or Ocean, reign and rule, but Zeus. These poets, however, are led to speak thus only because they think of the rulers of the world as changing; for those of them who combine the two characters in that they do not use mythical language throughout, e.g. Pherecydes and some others, make the original generating agent the Best, and so do the Magi, and some of the later sages also, e.g. both Empedocles and Anaxagoras, of whom one made love an element, and the other made reason a principle. Of those who maintain the existence of the unchangeable substances some say the One itself is the good itself; but they thought its substance lay mainly in its unity.
This, then, is the problem,-which of the two ways of speaking is right. It would be strange if to that which is primary and eternal and most self-sufficient this very quality--self-sufficiency and self-maintenance--belongs primarily in some other way than as a good. But indeed it can be for no other reason indestructible or self-sufficient than because its nature is good. Therefore to say that the first principle is good is probably correct; but that this principle should be the One or, if not that, at least an element, and an element of numbers, is impossible. Powerful objections arise, to avoid which some have given up the theory (viz. those who agree that the One is a first principle and element, but only of mathematical number). For on this view all the units become identical with species of good, and there is a great profusion of goods. Again, if the Forms are numbers, all the Forms are identical with species of good. But let a man assume Ideas of anything he pleases. If these are Ideas only of goods, the Ideas will not be substances; but if the Ideas are also Ideas of substances, all animals and plants and all individuals that share in Ideas will be good.
These absurdities follow, and it also follows that the contrary element, whether it is plurality or the unequal, i.e. the great and small, is the bad-itself. (Hence one thinker avoided attaching the good to the One, because it would necessarily follow, since generation is from contraries, that badness is the fundamental nature of plurality; while others say inequality is the nature of the bad.) It follows, then, that all things partake of the bad except one--the One itself, and that numbers partake of it in a more undiluted form than spatial magnitudes, and that the bad is the space in which the good is realized, and that it partakes in and desires that which tends to destroy it; for contrary tends to destroy contrary. And if, as we were saying, the matter is that which is potentially each thing, e.g. that of actual fire is that which is potentially fire, the bad will be just the potentially good.
All these objections, then, follow, partly because they make every principle an element, partly because they make contraries principles, partly because they make the One a principle, partly because they treat the numbers as the first substances, and as capable of existing apart, and as Forms.
If, then, it is equally impossible not to put the good among the first principles and to put it among them in this way, evidently the principles are not being correctly described, nor are the first substances. Nor does any one conceive the matter correctly if he compares the principles of the universe to that of animals and plants, on the ground that the more complete always comes from the indefinite and incomplete-which is what leads this thinker to say that this is also true of the first principles of reality, so that the One itself is not even an existing thing. This is incorrect, for even in this world of animals and plants the principles from which these come are complete; for it is a man that produces a man, and the seed is not first.
It is out of place, also, to generate place simultaneously with the mathematical solids (for place is peculiar to the individual things, and hence they are separate in place; but mathematical objects are nowhere), and to say that they must be somewhere, but not say what kind of thing their place is.
Those who say that existing things come from elements and that the first of existing things are the numbers, should have first distinguished the senses in which one thing comes from another, and then said in which sense number comes from its first principles.
By intermixture? But (1) not everything is capable of intermixture, and (2) that which is produced by it is different from its elements, and on this view the one will not remain separate or a distinct entity; but they want it to be so.
By juxtaposition, like a syllable? But then (1) the elements must have position; and (2) he who thinks of number will be able to think of the unity and the plurality apart; number then will be this-a unit and plurality, or the one and the unequal.
Again, coming from certain things means in one sense that these are still to be found in the product, and in another that they are not; which sense does number come from these elements? Only things that are generated can come from elements which are present in them. Does number come, then, from its elements as from seed? But nothing can be excreted from that which is indivisible. Does it come from its contrary, its contrary not persisting? But all things that come in this way come also from something else which does persist. Since, then, one thinker places the 1 as contrary to plurality, and another places it as contrary to the unequal, treating the 1 as equal, number must be being treated as coming from contraries. There is, then, something else that persists, from which and from one contrary the compound is or has come to be. Again, why in the world do the other things that come from contraries, or that have contraries, perish (even when all of the contrary is used to produce them), while number does not? Nothing is said about this. Yet whether present or not present in the compound the contrary destroys it, e.g. 'strife' destroys the 'mixture' (yet it should not; for it is not to that that is contrary).
Once more, it has not been determined at all in which way numbers are the causes of substances and of being-whether (1) as boundaries (as points are of spatial magnitudes). This is how Eurytus decided what was the number of what (e.g. one of man and another of horse), viz. by imitating the figures of living things with pebbles, as some people bring numbers into the forms of triangle and square. Or (2) is it because harmony is a ratio of numbers, and so is man and everything else? But how are the attributes-white and sweet and hot-numbers? Evidently it is not the numbers that are the essence or the causes of the form; for the ratio is the essence, while the number the causes of the form; for the ratio is the essence, while the number is the matter. E.
g. the essence of flesh or bone is number only in this way, 'three parts of fire and two of earth'. And a number, whatever number it is, is always a number of certain things, either of parts of fire or earth or of units; but the essence is that there is so much of one thing to so much of another in the mixture; and this is no longer a number but a ratio of mixture of numbers, whether these are corporeal or of any other kind.
Number, then, whether it be number in general or the number which consists of abstract units, is neither the cause as agent, nor the matter, nor the ratio and form of things. Nor, of course, is it the final cause.
One might also raise the question what the good is that things get from numbers because their composition is expressible by a number, either by one which is easily calculable or by an odd number. For in fact honey-water is no more wholesome if it is mixed in the proportion of three times three, but it would do more good if it were in no particular ratio but well diluted than if it were numerically expressible but strong. Again, the ratios of mixtures are expressed by the adding of numbers, not by mere numbers; e.g. it is 'three parts to two', not 'three times two'. For in any multiplication the genus of the things multiplied must be the same; therefore the product 1X2X3 must be measurable by 1, and 4X5X6 by 4 and therefore all products into which the same factor enters must be measurable by that factor. The number of fire, then, cannot be 2X5X3X6 and at the same time that of water 2X3.