The Selfish Gene
But what a complicated calculation to expect a poor survival machine to do, especially in a hurry! Even the great mathematical biologist J. B. S. Haldane (in a paper of 1955 in which he anticipated Hamilton by postulating the spread of a gene for saving close relatives from drowning) remarked:'... on the two occasions when I have pulled possibly drowning people out of the water (at an infinitesimal risk to myself) I had no time to make such calculations.' Fortunately, however, as Haldane well knew, it is not necessary to assume that survival machines do the sums consciously in their heads. Just as we may use a slide rule without appreciating that we are, in effect, using logarithms, so an animal may be pre-programmed in such a way that it behaves as if it had made a complicated calculation.
This is not so difficult to imagine as it appears. When a man throws a ball high in the air and catches it again, he behaves as if he had solved a set of differential equations in predicting the trajectory of the ball. He may neither know nor care what a differential equation is, but this does not affect his skill with the ball. At some subconscious level, something functionally equivalent to the mathematical calculations is going on. Similarly, when a man takes a difficult decision, after weighing up all the pros and cons, and all the consequences of the decision that he can imagine, he is doing the functional equivalent of a large 'weighted sum' calculation, such as a computer might perform.
If we were to program a computer to simulate a model survival machine making decisions about whether to behave altruistically, we should probably proceed roughly as follows. We should make a list of all the alternative things the animal might do. Then for each of these alternative behaviour patterns we program a weighted sum calculation. All the various benefits will have a plus sign; all the risks will have a minus sign; both benefits and risks will be weighted by being multiplied by the appropriate index of relatedness before being added up. For simplicity we can, to begin with, ignore other weightings, such as those for age and health. Since an individual's 'relatedness' with himself is 1 (i.e. he has 100 per cent of his own genes-obviously), risks and benefits to himself will not be devalued at all, but will be given their full weight in the calculation. The whole sum for any one of the alternative behaviour patterns will look like this: Net benefit of behaviour pattern = Benefit to self - Risk to self +1/2 Benefit to brother - 1/2 Risk to brother + 1/2 Benefit to other brother - 1/2 Risk to other brother + 1/8 Benefit to first cousin - 1/8 Risk to first cousin + Benefit to child - Risk to child + etc.
The result of the sum will be a number called the net benefit score of that behaviour pattern. Next, the model animal computes the equivalent sum for each alternative behaviour pattern in his repertoire. Finally he chooses to perform the behaviour pattern which emerges with the largest net benefit. Even if all the scores come out negative, he should still choose the action with the highest one, the least of evils. Remember that any positive action involves consumption of energy and time, both of which could have been spent doing other things. If doing nothing emerges as the 'behaviour' with the highest net benefit score, the model animal will do nothing. Here is a very over-simplified example, this time expressed in the form of a subjective soliloquy rather than a computer simulation. I am an animal who has found a clump of eight mushrooms. After taking account of their nutritional value, and subtracting something for the slight risk that they might be poisonous, I estimate that they are worth +6 units each (the units are arbitrary pay-offs as in the previous chapter). The mushrooms are so big I could eat only three of them. Should I inform anybody else about my find, by giving a 'food call'? Who is within earshot? Brother B (his relatedness to me is 2), cousin C (relatedness to me = 1/8), and D (no particular relation: his relatedness to me is some small number which can be treated as zero for practical purposes). The net benefit score to me if I keep quiet about my find will be +6 for each of the three mushrooms I eat, that is +18 in all. My net benefit score if I give the food call needs a bit of figuring. The eight mushrooms will be shared equally between the four of us. The pay-off to me from the two that I eat myself will be the full +6 units each, that is +12 in all. But I shall also get some pay-off when my brother and cousin eat their two mushrooms each, because of our shared genes. The actual score comes to (1 x 12) + (1/2 x 12) + (1/8 x 12) + (0 x 12) = + 19.5. The corresponding net benefit for the selfish behaviour was +18: it is a close-run thing, but the verdict is clear. I should give the food call; altruism on my part would in this case pay my selfish genes.
I have made the simplifying assumption that the individual animal works out what is best for his genes. What really happens is that the gene pool becomes filled with genes that influence bodies in such a way that they behave as if they had made such calculations.
In any case the calculation is only a very preliminary first approximation to what it ideally should be. It neglects many things, including the ages of the individuals concerned. Also, if I have just had a good meal, so that I can only find room for one mushroom, the net benefit of giving the food call will be greater than it would be if I was famished. There is no end to the progressive refinements of the calculation that could be achieved in the best of all possible worlds. But real life is not lived in the best of all possible worlds. We cannot expect real animals to take every last detail into account in coming to an optimum decision. We shall have to discover, by observation and experiment in the wild, how closely real animals actually come to achieving an ideal cost-benefit analysis.
Just to reassure ourselves that we have not become too carried away with subjective examples, let us briefly return to gene language. Living bodies are machines programmed by genes that have survived. The genes that have survived have done so in conditions that tended on average to characterize the environment of the species in the past. Therefore 'estimates' of costs and benefits are based on past 'experience', just as they are in human decision-making. However, experience in this case has the special meaning of gene experience or, more precisely, conditions of past gene survival. (Since genes also endow survival machines with the capacity to learn, some cost-benefit estimates could be said to be taken on the basis of individual experience as well.) So long as conditions do not change too drastically, the estimates will be good estimates, and survival machines will tend to make the right decisions on average. If conditions change radically, survival machines will tend to make erroneous decisions, and their genes will pay the penalty. Just so; human decisions based on outdated information tend to be wrong.
Estimates of relatedness are also subject to error and uncertainty. In our over-simplified calculations so far, we have talked as if survival machines know who is related to them, and how closely. In real life such certain knowledge is occasionally possible, but more usually the relatedness can only be estimated as an average number. For example, suppose that A and B could equally well be either half brothers or full brothers. Their relatedness is either 1/4 or 1/2, but since we do not know whether they are half or full brothers, the effectively usable figure is the average, 1. If it is certain that they have the same mother, but the odds that they have the same father are only 1 in 10, then it is 90 per cent certain that they are half brothers, and 10 percent certain that they are full brothers, and the effective relatedness is 1/10 x 1/2 + 9/10 x 1/4 = 0.275.
But when we say something like 'it' is 90 per cent certain, what 'it' are we referring to? Do we mean a human naturalist after a long field study is 90 per cent certain, or do we mean the animals are 90 per cent certain? With a bit of luck these two may amount to nearly the same thing. To see this, we have to think how animals might actually go about estimating who their close relations are.
We know who our relations are because we are told, because we give them names, because we have formal marriages, and because we have written records and good memories. Many social anthropologists are preoccupied with 'kinship' in the societies which they study. They do not mean real genetic kinship, but subjective and cultural ideas of kinship. Human customs and tribal rituals commonly give great emp
hasis to kinship; ancestor worship is widespread, family obligations and loyalties dominate much of life. Blood-feuds and inter-clan warfare are easily interpretable in terms of Hamilton's genetic theory. Incest taboos testify to the great kinship-consciousness of man, although the genetical advantage of an incest taboo is nothing to do with altruism; it is presumably concerned with the injurious effects of recessive genes which appear with inbreeding. (For some reason many, anthropologists do not like this explanation.)
How could wild animals 'know' who their kin are, or in other words, what behavioural rules could they follow which would have the indirect effect of making them seem to know about kinship? The rule 'be nice to your relations' begs the question of how relations are to be recognized in practice. Animals have to be given by their genes a simple rule for action, a rule that does not involve all-wise cognition of the ultimate purpose of the action, but a rule that works nevertheless, at least in average conditions. We humans are familiar with rules, and so powerful are they that if we are small minded we obey a rule itself, even when we can see perfectly well that it is not doing us, or anybody else, any good. For instance, some orthodox Jews and Muslims would starve rather than break their rule against eating pork. What simple practical rules could animals obey which, under normal conditions, would have the indirect effect of benefiting their close relations?
If animals had a tendency to behave altruistically towards individuals who physically resembled them, they might indirectly be doing their kin a bit of good. Much would depend on details of the species concerned. Such a rule would, in any case, only lead to 'right' decisions in a statistical sense. If conditions changed, for example if a species started living in much larger groups, it could lead to wrong decisions. Conceivably, racial prejudice could be interpreted as an irrational generalization of a kin-selected tendency to identify with individuals physically resembling oneself, and to be nasty to individuals different in appearance.
In a species whose members do not move around much, or whose members move around in small groups, the chances may be good that any random individual you come across is fairly close kin to you. In this case the rule 'Be nice to any member of the species whom you meet' could have positive survival value, in the sense that a gene predisposing its possessors to obey the rule might become more numerous in the gene pool. This may be why altruistic behaviour is so frequently reported in troops of monkeys and schools of whales. Whales and dolphins drown if they are not allowed to breathe air. Baby whales, and injured individuals who cannot swim to the surface have been seen to be rescued and held up by companions in the school. It is not known whether whales have ways of knowing who their close relatives are, but it is possible that it does not matter. It may be that the overall probability that a random member of the school is a relation is so high that the altruism is worth the cost. Incidentally, there is at least one well-authenticated story of a drowning human swimmer being rescued by a wild dolphin. This could be regarded as a misfiring of the rule for saving drowning members of the school. The rule's 'definition' of a member of the school who is drowning might be something like: 'A long thing thrashing about and choking near the surface.'
Adult male baboons have been reported to risk their lives defending the rest of the troop against predators such as leopards. It is quite probable that any adult male has, on average, a fairly large number of genes tied up in other members of the troop. A gene that 'says', in effect: 'Body, if you happen to be an adult male, defend the troop against leopards', could become more numerous in the gene pool. Before leaving this often-quoted example, it is only fair to add that at least one respected authority has reported very different facts. According to her, adult males are the first over the horizon when a leopard appears.
Baby chicks feed in family clutches, all following their mother. They have two main calls. In addition to the loud piercing cheep which I have already mentioned, they give short melodious twitters when feeding. The cheeps, which have the effect of summoning the mother's aid, are ignored by the other chicks. The twitters, however, are attractive to chicks. This means that when one chick finds food, its twitters attract other chicks to the food as well: in the terms of the earlier hypothetical example, the twitters are 'food calls'. As in that case, the apparent altruism of the chicks can easily be explained by kin selection. Since, in nature, the chicks would be all full brothers and sisters, a gene for giving the food twitter would spread, provided the cost to the twitterer is less than half the net benefit to the other chicks. As the benefit is shared out between the whole clutch, which normally numbers more than two, it is not difficult to imagine this condition being realized. Of course the rule misfires in domestic or farm situations when a hen is made to sit on eggs not her own, even turkey or duck eggs. But neither the hen nor her chicks can be expected to realize this. Their behaviour has been shaped under the conditions that normally prevail in nature, and in nature strangers are not normally found in your nest.
Mistakes of this sort may, however, occasionally happen in nature. In species that live in herds or troops, an orphaned youngster may be adopted by a strange female, most probably one who has lost her own child. Monkey-watchers sometimes use the word 'aunt' for an adopting female. In most cases there is no evidence that she really is an aunt, or indeed any kind of relative: if monkey-watchers were as gene-conscious as they might be, they would not use an important word like 'aunt' so uncritically. In most cases we should probably regard adoption, however touching it may seem, as a misfiring of a built-in rule. This is because the generous female is doing her own genes no good by caring for the orphan. She is wasting time and energy which she could be investing in the lives of her own kin, particularly future children of her own. It is presumably a mistake that happens too seldom for natural selection to have 'bothered' to change the rule by making the maternal instinct more selective. In many cases, by the way, such adoptions do not occur, and an orphan is left to die.
There is one example of a mistake which is so extreme that you may prefer to regard it not as a mistake at all, but as evidence against the selfish gene theory. This is the case of bereaved monkey mothers who have been seen to steal a baby from another female, and look after it. I see this as a double mistake, since the adopter not only wastes her own time; she also releases a rival female from the burden of child-rearing, and frees her to have another child more quickly. It seems to me a critical example which deserves some thorough research. We need to know how often it happens; what the average relatedness between adopter and child is likely to be; and what the attitude of the real mother of the child is - it is, after all, to her advantage that her child should be adopted; do mothers deliberately try to deceive naive young females into adopting their children? (It has also been suggested that adopters and baby-snatchers might benefit by gaining valuable practice in the art of child -rearing.)
An example of a deliberately engineered misfiring of the maternal instinct is provided by cuckoos, and other 'brood-parasites'-birds that lay their eggs in somebody else's nest. Cuckoos exploit the rule built into bird parents: 'Be nice to any small bird sitting in the nest that you built.' Cuckoos apart, this rule will normally have the desired effect of restricting altruism to immediate kin, because it happens to be a fact that nests are so isolated from each other that the contents of your own nest are almost bound to be your own chicks. Adult herring gulls do not recognize their own eggs, and will happily sit on other gull eggs, and even crude wooden dummies if these are substituted by a human experimenter. In nature, egg recognition is not important for gulls, because eggs do not roll far enough to reach the vicinity of a neighbour's nest, some yards away. Gulls do, however, recognize their own chicks: chicks, unlike eggs, wander, and can easily end up near the nest of a neighbouring adult, often with fatal results, as we saw in Chapter 1.
Guillemots, on the other hand, do recognize their own eggs by means of the speckling pattern, and actively discriminate in favour of them when incubating. This is presumably because they nest on
flat rocks, where there is a danger of eggs rolling around and getting muddled up. Now, it might be said, why do they bother to discriminate and sit only on their own eggs? Surely if everybody saw to it that she sat on somebody's egg, it would not matter whether each particular mother was sitting on her own or somebody else's. This is the argument of a group selectionist. Just consider what would happen if such a group baby-sitting circle did develop. The average clutch size of the guillemot is one. This means that if the mutual baby-sitting circle is to work successfully, every adult would have to sit on an average of one egg. Now suppose somebody cheated, and refused to sit on an egg. Instead of wasting time sitting, she could spend her time laying more eggs. And the beauty of the scheme is that the other, more altruistic, adults would look after them for her. They would go on faithfully obeying the rule 'If you see a stray egg near your nest, haul it in and sit on it.' So the gene for cheating the system would spread through the population, and the nice friendly baby-sitting circle would break down.
'Well', it might be said, 'what if the honest birds retaliated by refusing to be blackmailed, and resolutely decided to sit on one egg and only one egg? That should foil the cheaters, because they would see their own eggs lying out on the rocks with nobody incubating them. That should soon bring them into line.' Alas, it would not. Since we are postulating that the sitters are not discriminating one egg from another, if the honest birds put into practice this scheme for resisting cheating, the eggs that ended up being neglected would be just as likely to be their own eggs as those of the cheaters. The cheaters would still have the advantage, because they would lay more eggs and have more surviving children. The only way an honest guillemot could beat the cheaters would be to discriminate actively in favour of her own eggs. That is, to cease being altruistic and look after her own interests.