The Selfish Gene
So far, in this chapter and in the last, we have seen everything from the parent's point of view, largely the mother's. We have asked whether parents can be expected to have favourites, and in general what is the best investment policy for a parent. But perhaps each child can influence how much his parents invest in him as against his brothers and sisters. Even if parents do not 'want' to show favouritism among their children, could it be that children grab favoured treatment for themselves? Would it pay them to do so? More strictly, would genes for selfish grabbing among children become more numerous in the gene pool than rival genes for accepting no more than one's fair share? This matter has been brilliantly analysed by Trivers, in a paper of 1974 called Parent-Offspring Conflict.
A mother is equally related to all her children, born and to be born. On genetic grounds alone she should have no favourites, as we have seen. If she does show favouritism it should be based on differences in expectation of life, depending on age and other things. The mother, like any individual, is twice as closely 'related' to herself as she is to any of her children. Other things being equal, this means that she should invest most of her resources selfishly in herself, but other things are not equal. She can do her genes more good by investing a fair proportion of her resources in her children. This is because these are younger and more helpless than she is, and they can therefore benefit more from each unit of investment than she can herself. Genes for investing in more helpless individuals in preference to oneself can prevail in the gene pool, even though the beneficiaries may share only a proportion of one's genes. This is why animals show parental altruism, and indeed why they show any kind of kin-selected altruism.
Now look at it from the point of view of a particular child. He is just as closely related to each of is brothers and sisters as his mother is to them. The relatedness is 1/2 in all cases. Therefore he 'wants' his mother to invest some of her resources in his brothers and sisters. Genetically speaking, he is just as altruistically disposed to them as his mother is. But again, he is twice as closely related to himself as he is to any brother or sister, and this will dispose him to want his mother to invest in him more than in any particular brother or sister, other things being equal. In this case other things might indeed be equal. If you and your brother are the same age, and both are in a position to benefit equally from a pint of mother's milk, you 'should' try to grab more than your fair share, and he should try to grab more than his fair share. Have you ever heard a litter of piglets squealing to be first on the scene when the mother sow lies down to feed them? Or little boys fighting over the last slice of cake? Selfish greed seems to characterize much of child behaviour.
But there is more to it than this. If I am competing with my brother for a morsel of food, and if he is much younger than me so that he could benefit from the food more than I could, it might pay my genes to let him have it. An elder brother may have exactly the same grounds for altruism as a parent: in both cases, as we have seen, the relatedness is 1/2, and in both cases the younger individual can make better use of the resource than the elder. If I possess a gene for giving up food, there is a 50 per cent chance that my baby brother contains the same gene. Although the gene has double the chance of being in my own body-100 per cent, it is in my body-my need of the food maybe less than half as urgent. In general, a child 'should' grab more than his share of parental investment, but only up to a point. Up to what point? Up to the point where the resulting net cost to his brothers and sisters, born and potentially to be born, is just double the benefit of the grabbing to himself.
Consider the question of when weaning should take place. A mother wants to stop suckling her present child so that she can prepare for the next one. The present child, on the other hand, does not want to be weaned yet, because milk is a convenient, trouble-free source of food, and he does not want to have to go out and work for his living. To be more exact, he does want eventually to go out and work for his living, but only when he can do his genes more good by leaving his mother free to rear his little brothers and sisters, than by staying behind himself. The older a child is, the less relative benefit does he derive from each pint of milk. This is because he is bigger, and a pint of milk is therefore a smaller proportion of his requirement, and also he is becoming more capable of fending for himself if he is forced to. Therefore when an old child drinks a pint that could have been invested in a younger child, he is taking relatively more parental investment for himself than when a young child drinks a pint. As a child grows older, there will come a moment when it would pay his mother to stop feeding him, and invest in a new child instead. Somewhat later there will come a time when the old child too would benefit his genes most by weaning himself. This is the moment when a pint of milk can do more good to the copies of his genes that may be present in his brothers and sisters than it can to the genes that are present in himself.
The disagreement between mother and child is not an absolute one, but a quantitative one, in this case a disagreement over timing. The mother wants to go on suckling her present child up to the moment when investment in him reaches his 'fair' share, taking into account his expectation of life and how much she has already invested in him. Up to this point there is no disagreement. Similarly, both mother and child agree in not wanting him to go on sucking after the point when the cost to future children is more than double the benefit to him. But there is disagreement between mother and child during the intermediate period, the period when the child is getting more than his share as the mother sees it, but when the cost to other children is still less than double the benefit to him.
Weaning time is just one example of a matter of dispute between mother and child. It could also be regarded as a dispute between one individual and all his future unborn brothers and sisters, with the mother taking the part of her future unborn children. More directly there may be competition between contemporary rivals for her investment, between litter mates or nest mates. Here, once again, the mother will normally be anxious to see fair play.
Many baby birds are fed in the nest by their parents. They all gape and scream, and the parent drops a worm or other morsel in the open mouth of one of them. The loudness with which each baby screams is, ideally, proportional to how hungry he is. Therefore, if the parent always gives the food to the loudest screamer, they should all tend to get their fair share, since when one has had enough he will not scream so loudly. At least that is what would happen in the best of all possible worlds, if individuals did not cheat. But in the light of our selfish gene concept we must expect that individuals will cheat, will tell lies about how hungry they are. This will escalate, apparently rather pointlessly because it might seem that if they are all lying by screaming too loudly, this level of loudness will become the norm, and will cease, in effect, to be a lie. However, it cannot de-escalate, because any individual who takes the first step in decreasing the loudness of his scream will be penalized by being fed less, and is more likely to starve. Baby bird screams do not become infinitely loud, because of other considerations. For example, loud screams tend to attract predators, and they use up energy.
Sometimes, as we have seen, one member of a litter is a runt, much smaller than the rest. He is unable to fight for food as strongly as the rest, and runts often die. We have considered the conditions under which it would actually pay a mother to let a runt die. We might suppose intuitively that the runt himself should go on struggling to the last, but the theory does not necessarily predict this. As soon as a runt becomes so small and weak that his expectation of life is reduced to the point where benefit to him due to parental investment is less than half the benefit that the same investment could potentially confer on the other babies, the runt should die gracefully and willingly. He can benefit his genes most by doing so. That is to say, a gene that gives the instruction 'Body, if you are very much smaller than your litter-mates, give up the struggle and die', could be successful in the gene pool, because it has a 50 per cent chance of being in the body of each brother and sister saved, and its c
hances of surviving in the body of the runt are very small anyway. There should be a point of no return in the career of a runt. Before he reaches this point he should go on struggling. As soon as he reaches it he should give up and preferably let himself be eaten by his litter-mates or his parents.
I did not mention it when we were discussing Lack's theory of clutch size, but the following is a reasonable strategy for a parent who is undecided as to what is her optimum clutch size for the current year. She might lay one more egg than she actually 'thinks' is likely to be the true optimum. Then, if the year's food crop should turn out to be a better one than expected, she will rear the extra child. If not, she can cut her losses. By being careful always to feed the young in the
same order, say in order of size, she sees to it that one, perhaps a runt, quickly dies, and not too much food is wasted on him, beyond the initial investment of egg yolk or equivalent. From the mother's point of view, this may be the explanation of the runt phenomenon. He represents the hedging of the mother's bets. This has been observed in many birds.
Using our metaphor of the individual animal as a survival machine behaving as if it had the 'purpose' of preserving its genes, we can talk about a conflict between parents and young, a battle of the generations. The battle is a subtle one, and no holds are barred on either side. A child will lose no opportunity of cheating. It will pretend to be hungrier than it is, perhaps younger than it is, more in danger than it really is. It is too small and weak to bully its parents physically, but it uses every psychological weapon at its disposal: lying, cheating, deceiving, exploiting, right up to the point where it starts to penalize its relatives more than its genetic relatedness to them should allow. Parents, on the other hand, must be alert to cheating and deceiving, and must try not to be fooled by it. This might seem an easy task. If the parent knows that its child is likely to lie about how hungry it is, it might employ the tactic of feeding it a fixed amount and no more, even though the child goes on screaming. One trouble with this is that the child may not have been lying, and if it dies as a result of not being fed the parent would have lost some of its precious genes. Wild birds can die after being starved for only a few hours.
A. Zahavi has suggested a particularly diabolical form of child blackmail: the child screams in such a way as to attract predators deliberately to the nest. The child is 'saying' 'Fox, fox, come and get me.' The only way the parent can stop it screaming is to feed it. So the child gains more than its fair share of food, but at a cost of some risk to itself. The principle of this ruthless tactic is the same as that of the hijacker threatening to blow up an aeroplane, with himself on board, unless he is given a ransom. I am sceptical about whether it could ever be favoured in evolution, not because it is too ruthless, but because I doubt if it could ever pay the blackmailing baby. He has too much to lose if a predator really came. This is clear for an only child, which is the case Zahavi himself considers. No matter how much his mother may already have invested in him, he should still value his own life more than his mother values it, since she has only half of his genes. Moreover, the tactic would not pay even if the blackmailer was one of a clutch of vulnerable babies, all in the nest together, since the blackmailer has a 50 per cent genetic 'stake' in each of his endangered brothers and sisters, as well as a 100 per cent stake in himself. I suppose the theory might conceivably work if the predominant predator had the habit of only taking the largest nestling from a nest. Then it might pay a smaller one to use the threat of summoning a predator, since it would not be greatly endangering itself. This is analogous to holding a pistol to your brother's head rather than threatening to blow yourself up.
More plausibly, the blackmail tactic might pay a baby cuckoo. As is well known, cuckoo females lay one egg in each of several 'foster' nests, and then leave the unwitting foster-parents, of a quite different species, to rear the cuckoo young. Therefore a baby cuckoo has no genetic stake in his foster brothers and sisters. (Some species of baby cuckoo will not have any foster brothers and sisters, for a sinister reason which we shall come to. For the moment I assume we are dealing with one of those species in which foster brothers and sisters co-exist alongside the baby cuckoo.) If a baby cuckoo screamed loudly enough to attract predators, it would have a lot to lose-its life-but the foster mother would have even more to lose, perhaps four of her young. It could therefore pay her to feed it more than its share, and the advantage of this to the cuckoo might outweigh the risk.
This is one of those occasions when it would be wise to translate back into respectable gene language, just to reassure ourselves that we have not become too carried away with subjective metaphors. What does it really mean to set up the hypothesis that baby cuckoos 'blackmail' their foster parents by screaming 'Predator, predator, come and get me and all my little brothers and sisters'? In gene terms it means the following.
Cuckoo genes for screaming loudly became more numerous in the cuckoo gene pool because the loud screams increased the probability that the foster parents would feed the baby cuckoos. The reason the foster parents responded to the screams in this way was that genes for responding to the screams had spread through the gene pool of the foster-species. The reason these genes spread was that individual foster parents who did not feed the cuckoos extra food, reared fewer of their own children-fewer than rival parents who did feed their cuckoos extra. This was because predators were attracted to the nest by the cuckoo cries. Although cuckoo genes for not screaming were less likely to end up in the bellies of predators than
screaming genes, the non-screaming cuckoos paid the greater penalty of not being fed extra rations. Therefore the screaming genes spread through the cuckoo gene pool.
A similar chain of genetic reasoning, following the more subjective argument given above, would show that although such a blackmailing gene could conceivably spread through a cuckoo gene pool, it is unlikely to spread through the gene pool of an ordinary species, at least not for the specific reason that it attracted predators. Of course, in an ordinary species there could be other reasons for screaming genes to spread, as we have already seen, and these would incidentally have the effect of occasionally attracting predators. But here the selective influence of predation would be, if anything, in the direction of making the cries quieter. In the hypothetical case of the cuckoos, the net influence of predators, paradoxical as it sounds at first, could be to make the cries louder.
There is no evidence, one way or the other, on whether cuckoos, and other birds of similar 'brood-parasitic' habit, actually employ the blackmail tactic. But they certainly do not lack ruthlessness. For instance, there are honey-guides who, like cuckoos, lay their eggs in the nests of other species. The baby honey-guide is equipped with a sharp, hooked beak. As soon as he hatches out, while he is still blind, naked, and otherwise helpless, he scythes and slashes his foster brothers and sisters to death: dead brothers do not compete for food! The familiar British cuckoo achieves the same result in a slightly different way. It has a short incubation-time, and so the baby cuckoo manages to hatch out before its foster brothers and sisters. As soon as it hatches, blindly and mechanically, but with devastating effectiveness, it throws the other eggs out of the nest. It gets underneath an egg, fitting it into a hollow in its back. Then it slowly backs up the side of the nest, balancing the egg between its wing-stubs, and topples the egg out on to the ground. It does the same with all the other eggs, until it has the nest, and therefore the attention of its foster parents, entirely to itself.
One of the most remarkable facts I have learned in the past year was reported from Spain by F. Alvarez, L. Arias de Reyna, and H. Segura. They were investigating the ability of potential foster parents-potential victims of cuckoos-to detect intruders, cuckoo eggs or chicks. In the course of their experiments they had occasion to introduce into magpie nests the eggs and chicks of cuckoos, and, for comparison, eggs and chicks of other species such as swallows.
On one occasion they introduced a baby swallow into a magpie's nest. The next day t
hey noticed one of the magpie eggs lying on the ground under the nest. It had not broken, so they picked it up, replaced it, and watched. What they saw is utterly remarkable. The baby swallow, behaving exactly as if it was a baby cuckoo, threw the egg out. They replaced the egg again, and exactly the same thing happened. The baby swallow used the cuckoo method of balancing the egg on its back between its wing-stubs, and walking backwards up the side of the nest until the egg toppled out.
Perhaps wisely, Alvarez and his colleagues made no attempt to explain their astonishing observation. How could such behaviour evolve in the swallow gene pool? It must correspond to something in the normal life of a swallow. Baby swallows are not accustomed to finding themselves in magpie nests. They are never normally found in any nest except their own. Could the behaviour represent an evolved anti-cuckoo adaptation? Has the natural selection been favouring a policy of counter-attack in the swallow gene pool, genes for hitting the cuckoo with his own weapons? It seems to be a fact that swallows' nests are not normally parasitized by cuckoos. Perhaps this is why. According to this theory, the magpie eggs of the experiment would be incidentally getting the same treatment, perhaps because, like cuckoo eggs, they are bigger than swallow eggs. But if baby swallows can tell the difference between a large egg and a normal swallow egg, surely the mother should be able to as well. In this case why is it not the mother who ejects the cuckoo egg, since it would be so much easier for her to do so than the baby? The same objection applies to the theory that the baby swallow's behaviour normally functions to remove addled eggs or other debris from the nest. Once again, this task could be-and is-performed better by the parent. The fact that the difficult and skilled egg-rejecting operation was seen to be performed by a weak and helpless baby swallow, whereas an adult swallow could surely do it much more easily, compels me to the conclusion that, from the parent's point of view, the baby is up to no good.