The Stone Dogs
It was at this point that Richard Trevithick arrived in Virconium to take up a post as inspector of steam engines for the African Mining and Metals Combine. The young Cornish engineer had little formal education, like many of the entrepreneur-inventors of the time; unlike them, he also had virtually no business sense to speak of. What he did have was an almost instinctive grasp of the thermodynamics and mechanics of steam engines, and a matchlessly fertile imagination. In Africa, he found a patron with limitless capital and driving needs.
Trevithick's first accomplishment was a simple modification of the Watt engines used for pumping water and crushing ore in the Combine's gold mines in eastern Archona province; he substituted a riveted-iron double flue boiler for the earlier copper model, inserted the cylinder in the boiler itself, and tripled the operating pressures. The drastic increases in fuel efficiency led directly to his promotion to Inspector-General of Engines for the Combine.
Shipping shortages produced by the Napoleonic Wars, coupled with high prices and demand, had already prompted a coalition of investors to start a coal-fired iron smelting plant on the site of the future city of Diskarapur [Newcastle, South Area], where suitable coking coal and iron ore occurred in close proximity. The colonial Assembly had financed its expansion to include a Court-process puddling plant and crucible-steel facility for munitions production; there was a large Wilkinson-type cannon boring mill, imported from England, as well. The Mining Combine was sufficiently impressed with Trevithick's talents to propose a merger, and the setting-up of a Ferrous Metals Combine which would produce mining equipment—steam engines in particular.
Trevithick was in charge of the new operation, and recruited extensively in the British Isles for mechanics and engineers. Improved products followed rapidly, particularly since Drakia was too remote for Boulton & Watt patent-protection lawsuits. Pressures of up to 25 psi were quickly achieved, and smaller and more precisely-bored cylinders produced. Trevithick's next crucial innovation was the external feedwater condensor, which permitted recycling of boiler water (1799) and the uniflow valve system, which raised fuel efficiency another order of magnitude by separating the steam entry and exhaust areas of the cylinder. By 1800, Trevithick high-pressure single-cylinder engines were being produced in some numbers and were replacing or supplementing the Watt engines then in use.
However, Trevithick was not content with fulfilling his original mandate. The new engines were now compact and rugged enough to be a credible power plant for locomotive purposes. In 1800-1801 Trevithick and his team of assistants (which included a number of instrument makers familiar with precision metalworking) produced working scale models of road-engines and rail locomotives, as well as an experimental paddle wheel steamboat. The backers of the embryonic Ferrous Metals Combine were sufficiently impressed to provide funding for prototype development. While slow and cumbersome by later standards, the resulting locomotives and "road autosteamers" were an obvious and vast improvement on animal traction. Capital from gold production and the export trades flowed into further investment, and the first production models were in use by 1803. Steam-powered gunboats on the Nile proved the military utility of the new engines, and were crucial to the rapid pacification of the province of Egypt after the uprising of 1803. Steam dredges of Trevithick's design helped to build the Suez Canal in 1803-1810, and coastal steamers and harbor tugs. Steam gunboats pushed Draka control up the eastern coast of Africa and into Madagascar. As early as 1810, "drags" (steam haulers pulling wagons) were being used to transport troops.
The next important innovation was in the fuel and boiler systems. Power-driven drills had been an early application of Trevithick's work, searching for underground water in the extensive arid regions of southern Africa. When Egypt was overrun, drilling teams began operating in its Western Desert— and discovered petroleum in the deserts west of Alexandria,natural gas in the Nile Delta. There were no convenient coal mines in Egypt, and local engineers quickly modified their machinery to use at first crude oil, and then distilled products, as a fuel source. Once the greater convenience and heat-density of petroleum became apparent, most road-engines and an increasing number of nautical ones were converted to liquid fuels. At the same time, "water-tube" boilers (in which the furnace fire circulates around water-filled tubing to produce steam) were introduced, lowering the weight and bulk of boilers.
Power Distribution Systems
Meanwhile, Trevithick had not forgotten the special needs of his original Mining Combine patrons. The gold mines were quickly running deeper, and this was the hardest of hard-rock work. While unskilled labor was plentiful and cheap, costs still rose with depth. Trevithick and the team of apprentices and subordinates that grew around him experimented with direct-siting steam drills and borers, as well as with improved pumping and hoisting systems. However, piping hot steam without loss of heat (and therefore pressure) proved to be extremely difficult and dangerous, especially in underground situations.
Trevithick (and Edgar Stevens, his principal assistant) turned to compressed-air systems instead. The basic mechanical principles were already familiar, and local experiments with native rubber provided a solution to the problems of gaskets and flexible connectors. Large reciprocating double-action compressors were set up, enabling each mine (or later, factory) to have an efficient central power plant. Hegenerative systems (using the heat generated during the compression of the air to warm the feedwater of the steam engines) provided greater thermal efficiency. Compressed air was stored in central reservoirs, then distributed by iron piping to dispersed locations with only minor frictional losses; drills, pumps, winches, and crushers could be placed as needed and flexibly operated.
Once developed, this had obvious applications outside mining. Mobile compressors were developed to power rock drills and other equipment in road building and construction work; powered rock-saws drastically reduced the cost of masonry, despite the lack of trained masons and quarrymen. Central-factory systems, particularly alter the development of the rotary-vane air motor in the 1820s, superceded the clumsy, friction-ridden and dangerous belting and shafting the British pioneers of the Industrial Age had used. Whole new categories of machine tool proved possible with the flexible and precise control which air motors could offer with a simple manipulation of valves, and powered equipment could now be used in locations—e.g., the home—where direct steam drive was out of the question. Air transmission systems had few moving parts and were easily centrally controlled, leading to low maintenance costs. Compressed-air auxiliaries greatly simplified the operation of autosteamers.
Technology and the Sociology of Industry
By the 1830s, most Draka mining-industrial plants were using centralized pneumatic transmission systems, operating at standardized pressures. Given the vastly superior efficiency of such systems, the question arises of why the other industrial countries, particularly Britain, did not follow suit to anything like the same degree. (For example, several of the larger Draka cities installed mains systems delivering metered compressed air via understreet tubes in the 1840s and 1850s; the first European city to do so was Paris, in the 1880s—and that system was installed by Draka engineers.) A digression into industrial organization is necessary to establish the causal links.
The overwhelming majority of European and American industrial firms—even in heavy industry—were organized on a family business basic until well into the twentieth century; corporations were closely held. Before about 1870, railroads aside, this was the only form of business organization in those countries. These firms, mostly small, were obstinately self-financing, which sharply limited their capital reserves; and they were almost pathologically averse to debt and the supervision by banks it entailed. This form of organization responded quickly and intelligently to shifts in consumer demand; it was matchlessly efficient at supplying a diverse and "atomized" market.
In the proto-Domination, by contrast, industry developed to serve production rather than consumption; mines, heavy transportation,
the armed forces, the Landholders' League and its agricultural processing plants, were the primary customers. The primary demand was for metal goods, principally tools, rather than the textiles and other end-products which were the staple of British industry in the period. When consumer goods manufacture did become important, it was mostly as a part of the Landholders' League's drive to capture value-added by following its members' crops "downstream" through processing to final sale. Even here, orders were "lumpy" by contemporary standards; for example, the Combines bought standard products in immense quantity for their basic serf labor forces. After the League went into cooperative wholesaling/retailing for its members (at first by mail order), plantation demand was largely aggregated as well—the League bought uniform goods in bulk, e.g., agricultural machinery or cheap shoes for fieldhands, later canned goods and power systems. Thus markets were simple, and on the whole quite reliable, making it possible to utilize economies of scale with little risk. The production units were large, from the beginning, and operated by salaried mangers. The government, and the especially the League, dominated the banking system, which served to funnel the surplus capital of agriculture into concentrated locations.
Thus Draka enterprises could afford to be of technically optimum size (indeed, sometimes larger); sales were reliable enough, and capital abundant enough, that long-term planning and research became a feature of their operation two generations before the Germans followed in their footsteps. The concentration of all money incomes in the top 4%-8% of the population kept the savings rate extremely high, usually in the neighborhood of 30%-50% of GNP, which meant an economy that was both awash with capital and furnished with abundant opportunities for productive investment. Land, unskilled and semi-skilled labor, and raw materials were all superabundant and cheap; the perennial shortage of managerial personnel led to an early emphasis on higher education—influenced by the German tradition of many of the early immigrants.
At the same time, this was not a pure command economy. Prices were set by the market, which was completely open to world trade; the high export propensity exerted continual pressure on even the largest organizations. The consumer and service sectors that served the Citizen population were characterized by much smaller individually owned enterprises. The ideology of the corporate State came later; in the early period, roughly to 1840, it was a matter of "sleepwalking" through to a solution to a set of isolated problems. Only when the essentials were in place did the fact that a system existed become obvious.
The result was what the great classical-liberal economists of the 19th century regarded as an utterly perverse economy: one in which human beings and their food and clothing were intermediate production goods, and machine-tools and cannon end products. To function it required a militarized society regimented by terror. But for the sort of brute-force, quantitative, capital-goods intensive industrialization the Domination needed to power its relentless expansion, it was ideal.
Power System Development
1840-1910 Steam Turbines:
The low operating efficiency of reciprocating steam engines was obvious, both intuitively and from the growing knowledge of thermodynamic and mechanical analysis in the early 19th century. Even with pneumatic transmission, the reciprocating action of pistons lost efficiency every time it had to be transformed into rotary action, and there were annoying limits to the size, speed, and power-output of steam pistons. Attempts at direct rotary engines (steam turbines) were made in a number of countries, but the manufacturing difficulties were many. A multi-stage tur-bine was obviously essential if the expansive power of steam was to be utilized, but this required precision machining of unprecedented quality. Furthermore, for maximum efficiency operating speeds and temperatures whole orders of magnitude greater than the piston engine were needed. Wrought and cast iron, and direct-contact oil lubrication, had sufficed for Watt and even Trevithick; they were not enough for the turbine.
However, the Draka did have one advantage in the race to perfect a working steam turbine. Their extensive use of pneumatic systems had led to an early interest in axial-flow air motors, which is to say, air turbines. While it was much easier to manufacture a workable air turbine (operating temperatures were low, and for most uses a relatively low degree of efficiency was tolerable), the basic operating principles and problems were quite similar. The development of roller- ball and air-bearings from the 1840s was largely done in the course of work on air turbines, and so was the development of larger precision-machined steel alloy rotor blades—especially for the large boring machines used in heavy-artillery manufacture. By the 1860s, materials technology had advanced to a stage where steam turbines were a distinct possibility.
While industrial demand might have provided incentive enough, it was a military-transport need that provided the final impetus. Powered dirigible balloons had been experimented with in Alexandria and Diskarapur from the 1850s. During the Franco-Prussian war, the besieged French garrison of Paris improvised semirigid dirigibles powered by a Draka-made industrial compressor (reciprocating type) and propellers driven by air turbines. These were capable of speeds of up to 60 kph for several hours, and were used to ferry passengers and messages, and even to bomb the Prussian artillery; during the Paris Commune, they were also used to bombard Communard positions before attacks by government troops.
This success resulted in desultory research in a number of European countries (particularly the new German Empire), and a crash project in the Domination. Using a single-stage expansive steam turbine, extensive construction with the newly-available aluminum alloys, and pneumatic transmission, dirigible airships proved to be an expensive but practical weapons system during the Anglo-Russian war of 1879-1882. Shortly thereafter heavier models of steam turbine were used to generate electricity, to power turbocompressors for large-scale pneumatic systems, and to power ships through mechanical and pneumatic gearing.
Internal Combustion Engines:
The possibility of using combustion gases directly in the cylinders of a prime mover, rather than indirectly by heating a working fluid such as steam, had been theorized as far back as the 17th century. The attractions—simplicity, since there was no boiler system, and greater inherent thermal efficiency—were obvious. Again, manufacturing limitations prevented widespread use until well into the 19th century. In this field, French and German researchers established an early lead; the very efficiency of the central engine-pneumatic transmission system in the Domination inhibited research on alternatives. Andre Charbonneau (1820-1887) and Rudolf Diesel (1858-1920) established the workability of internal-combustion prime movers (using a flame-ignition and compression-ignition system respectively); by the 1880s, such "gas engines" were in quite common use in Europe, mostly as single-cylinder factory engines, especially in steel plants where they could be run on blast-furnace gas. The German General Stall's Transport Section, in conjunction with Diesel, made the first serious application to transportation, with a compression-innition system for their experimental dirigibles of the mid-to late-1880s. Meanwhile the French were perfecting the lighter spark-ignition engine, leading to the first practical heavier-than-air flight by Edouard Sancerre in 1898.
Once alerted to the possibilities, the Domination's armed forces and Institutes quickly eliminated the Europeans' early lead in piston-action internal combustion engines. By the 1890s, Diesel-type engines (largely of aluminum-alloy construction and running on a mixture of kerosene and hydrogen gas from the lift cells) had become the standard engine for dirigible airships worldwide. The spark-ignition engine was largely limited to airplanes; there were experimental applications to automobiles, but the industrial inertia of 60 years kept the steam engine dominant on the road, especially considering its greater range of fuels, ease of manufacture and maintenance, and greater reliability. However, the greater power-to-weight ratio of the internal combustion engine did maintain a certain degree of interest for ground applications, particularly in armored fighting vehicles.
The next step wa
s obvious, by analogy from the progress of steam engines: a gas turbine. The Domination's researchers first attempted (by about 1900) a "pure" turbine, with a rotary compressor delivering air to a combustion chamber, whence the gases exited through an expansive power-turbine. This proved to be a monumental engineering task, and the speeds and especially temperatures involved were beyond the manufacturing technology of the day—particularly when the corrosivenature of the combustion gases was considered. Developing an axial compressor that did not consume more power than it generated also proved frustratingly difficult. A further analogy suggested itself, however: the steam piston-compressor, air-turbine combination which had always been the mainstay of the Domination's industrial machine. Using a conventional compression-ignition cylinder as the gas-generating unit, a high-pressure gas of moderate temperature could be obtained, and then delivered through a power turbine. This gave many of the torque advantages of a turbine engine, an excellent power-to-weight ratio plus the fuel efficiency of Diesel's engine. This "turbocompound" engine was demonstrated on a trial basis in 1914, and was first applied to war dirigibles in 1917, and to armored fighting vehicles in 1917-1918. While easier to make than a pure turbine, the turbocompound was still a formidable proposition; American and European manufacturers continued to develop the reciprocating 1C engines, until pure turbines became available in the late 1930s.