Collapse: How Societies Choose to Fail or Succeed
Socially stratified societies, including modern American and European society, consist of farmers who produce food, plus non-farmers such as bureaucrats and soldiers who do not produce food but merely consume the food grown by the farmers and are in effect parasites on farmers. Hence in any stratified society the farmers must grow enough surplus food to meet not only their own needs but also those of the other consumers. The number of non-producing consumers that can be supported depends on the society’s agricultural productivity. In the United States today, with its highly efficient agriculture, farmers make up only 2% of our population, and each farmer can feed on the average 125 other people (American non-farmers plus people in export markets overseas). Ancient Egyptian agriculture, although much less efficient than modern mechanized agriculture, was still efficient enough for an Egyptian peasant to produce five times the food required for himself and his family. But a Maya peasant could produce only twice the needs of himself and his family. At least 70% of Maya society consisted of peasants. That’s because Maya agriculture suffered from several limitations.
First, it yielded little protein. Corn, by far the dominant crop, has a lower protein content than the Old World staples of wheat and barley. The few edible domestic animals already mentioned included no large ones and yielded much less meat than did Old World cows, sheep, pigs, and goats. The Maya depended on a narrower range of crops than did Andean farmers (who in addition to corn also had potatoes, high-protein quinoa, and many other plants, plus llamas for meat), and much narrower again than the variety of crops in China and in western Eurasia.
Another limitation was that Maya corn agriculture was less intensive and productive than the Aztecs’ chinampas (a very productive type of raised-field agriculture), the raised fields of the Tiwanaku civilization of the Andes, Moche irrigation on the coast of Peru, or fields tilled by animal-drawn plows over much of Eurasia.
Still a further limitation arose from the humid climate of the Maya area, which made it difficult to store corn beyond a year, whereas the Anasazi living in the dry climate of the U.S. Southwest could store it for three years.
Finally, unlike Andean Indians with their llamas, and unlike Old World peoples with their horses, oxen, donkeys, and camels, the Maya had no animal-powered transport or plows. All overland transport for the Maya went on the backs of human porters. But if you send out a porter carrying a load of corn to accompany an army into the field, some of that load of corn is required to feed the porter himself on the trip out, and some more to feed him on the trip back, leaving only a fraction of the load available to feed the army. The longer the trip, the less of the load is left over from the porter’s own requirements. Beyond a march of a few days to a week, it becomes uneconomical to send porters carrying corn to provision armies or markets. Thus, the modest productivity of Maya agriculture, and their lack of draft animals, severely limited the duration and distance possible for their military campaigns.
We are accustomed to thinking of military success as determined by quality of weaponry, rather than by food supply. But a clear example of how improvements in food supply may decisively increase military success comes from the history of Maori New Zealand. The Maori are the Polynesian people who were the first to settle New Zealand. Traditionally, they fought frequent fierce wars against each other, but only against closely neighboring tribes. Those wars were limited by the modest productivity of their agriculture, whose staple crop was sweet potatoes. It was not possible to grow enough sweet potatoes to feed an army in the field for a long time or on distant marches. When Europeans arrived in New Zealand, they brought potatoes, which beginning around 1815 considerably increased Maori crop yields. Maori could now grow enough food to supply armies in the field for many weeks. The result was a 15-year period in Maori history, from 1818 until 1833, when Maori tribes that had acquired potatoes and guns from the English sent armies out on raids to attack tribes hundreds of miles away that had not yet acquired potatoes and guns. Thus, the potato’s productivity relieved previous limitations on Maori warfare, similar to the limitations that low-productivity corn agriculture imposed on Maya warfare.
Those food supply considerations may contribute to explaining why Maya society remained politically divided among small kingdoms that were perpetually at war with each other, and that never became unified into large empires like the Aztec Empire of the Valley of Mexico (fed with the help of their chinampa agriculture and other forms of intensification) or the Inca Empire of the Andes (fed by more diverse crops carried by llamas over well-built roads). Maya armies and bureaucracies remained small and unable to mount lengthy campaigns over long distances. (Even much later, in 1848, when the Maya revolted against their Mexican overlords and a Maya army seemed to be on the verge of victory, the army had to break off fighting and go home to harvest another crop of corn.) Many Maya kingdoms held populations of only up to 25,000 to 50,000 people, none over half a million, within a radius of two or three days’ walk from the king’s palace. (The actual numbers are again highly controversial among archaeologists.) From the tops of the temples of some Maya kingdoms, it was possible to see the temples of the nearest kingdom. Maya cities remained small (mostly less than one square mile in area), without the large populations and big markets of Teotihuacán and Tenochtitlán in the Valley of Mexico, or of Chan-Chan and Cuzco in Peru, and without archaeological evidence of the royally managed food storage and trade that characterized ancient Greece and Mesopotamia.
Now for a quick crash-course in Maya history. The Maya area is part of the larger ancient Native American cultural region known as Mesoamerica, which extended approximately from Central Mexico to Honduras and constituted (along with the Andes of South America) one of the two New World centers of innovation before European arrival. The Maya shared much in common with other Mesoamerican societies not only in what they possessed, but also in what they lacked. For example, surprisingly to modern Westerners with expectations based on Old World civilizations, Mesoamerican societies lacked metal tools, pulleys and other machines, wheels (except locally as toys), boats with sails, and domestic animals large enough to carry loads or pull a plow. All of those great Maya temples were constructed by stone and wooden tools and by human muscle power alone.
Of the ingredients of Maya civilization, many were acquired by the Maya from elsewhere in Mesoamerica. For instance, Mesoamerican agriculture, cities, and writing first arose outside the Maya area itself, in valleys and coastal lowlands to the west and southwest, where corn and beans and squash were domesticated and became important dietary components by 3000 B.C., pottery arose around 2500 B.C., villages by 1500 B.C., cities among the Olmecs by 1200 B.C., writing appeared among the Zapotecs in Oaxaca around or after 600 B.C., and the first states arose around 300 B.C. Two complementary calendars, a solar calendar of 365 days and a ritual calendar of 260 days, also arose outside the Maya area. Other elements of Maya civilization were either invented, perfected, or modified by the Maya themselves.
Within the Maya area, villages and pottery appeared around or after 1000 B.C., substantial buildings around 500 B.C., and writing around 400 B.C. All preserved ancient Maya writing, constituting a total of about 15,000 inscriptions, is on stone and pottery and deals only with kings, nobles, and their conquests (Plate 13). There is not a single mention of commoners. When Spaniards arrived, the Maya were still using bark paper coated with plaster to write books, of which the sole four that escaped Bishop Landa’s fires turned out to be treatises on astronomy and the calendar. The ancient Maya also had had such bark-paper books, often depicted on their pottery, but only decayed remains of them have survived in tombs.
The famous Maya Long Count calendar begins on August 11, 3114 B.C.—just as our own calendar begins on January 1 of the first year of the Christian era. We know the significance to us of that day-zero of our calendar: it’s the supposed beginning of the year in which Christ was born. Presumably the Maya also attached some significance to their own day zero, but we don’t know what it was. The fi
rst preserved Long Count date is only A.D. 197 for a monument in the Maya area and 36 B.C. outside the Maya area, indicating that the Long Count calendar’s day-zero was backdated to August 11, 3114 B.C. long after the facts; there was no writing anywhere in the New World then, nor would there be for 2,500 years after that date.
Our calendar is divided into units of days, weeks, months, years, decades, centuries, and millennia: for example, the date of February 19, 2003, on which I wrote the first draft of this paragraph, means the 19th day of the second month in the third year of the first decade of the first century of the third millennium beginning with the birth of Christ. Similarly, the Maya Long Count calendar named dates in units of days (kin), 20 days (uinal), 360 days (tun), 7200 days or approximately 20 years (katunn), and 144,000 days or approximately 400 years (baktun). All of Maya history falls into baktuns 8, 9, and 10.
The so-called Classic period of Maya civilization begins in baktun 8, around A.D. 250, when evidence for the first kings and dynasties appears. Among the glyphs (written signs) on Maya monuments, students of Maya writing recognized a few dozen, each of which was concentrated in its own geographic area, and which are now considered to have had the approximate meaning of dynasties or kingdoms. In addition to Maya kings having their own name glyphs and palaces, many nobles also had their own inscriptions and palaces. In Maya society the king also functioned as high priest carrying the responsibility to attend to astronomical and calendrical rituals, and thereby to bring rain and prosperity, which the king claimed to have the supernatural power to deliver because of his asserted family relationship to the gods. That is, there was a tacitly understood quid pro quo: the reason why the peasants supported the luxurious lifestyle of the king and his court, fed him corn and venison, and built his palaces was because he had made implicit big promises to the peasants. As we shall see, kings got into trouble with their peasants if a drought came, because that was tantamount to the breaking of a royal promise.
From A.D. 250 onwards, the Maya population (as judged from the number of archaeologically attested house sites), the number of monuments and buildings, and the number of Long Count dates on monuments and pottery increased almost exponentially, to reach peak numbers in the 8th century A.D. The largest monuments were erected towards the end of that Classic period. Numbers of all three of those indicators of a complex society declined throughout the 9th century, until the last known Long Count date on any monument fell in baktun 10, in the year A.D. 909. That decline of Maya population, architecture, and the Long Count calendar constitutes what is known as the Classic Maya collapse.
As an example of the collapse, let’s consider in more detail a small but densely built city whose ruins now lie in western Honduras at a site known as Copán, and described in two recent books by archaeologist David Webster. For agricultural purposes the best land in the Copán area consists of five pockets of flat land with fertile alluvial soil along a river valley, with a tiny total area of only 10 square miles; the largest of those five pockets, known as the Copán pocket, has an area of only 5 square miles. Much of the land around Copán consists of steep hills, and nearly half of the hill area has a slope above 16% (approximately double the slope of the steepest grade that you are likely to encounter on an American highway). Soil in the hills is less fertile, more acidic, and poorer in phosphate than valley soil. Today, corn yields from valley-bottom fields are two or three times those of fields on hill slopes, which suffer rapid erosion and lose three-quarters of their productivity within a decade of farming.
As judged by numbers of house sites, population growth in the Copán Valley rose steeply from the 5th century up to a peak estimated at around 27,000 people at A.D. 750-900. Maya written history at Copán begins in the year with a Long Count date corresponding to A.D. 426, when later monuments record retrospectively that some person related to nobles at Tikal and Teotihuacán arrived. Construction of royal monuments glorifying kings was especially massive between A.D. 650 and 750. After A.D. 700, nobles other than kings also got into the act and began erecting their own palaces, of which there were about twenty by the year A.D. 800, when one of those palaces is known to have consisted of 50 buildings with room for about 250 people. All of those nobles and their courts would have increased the burden that the king and his own court imposed on the peasants. The last big buildings at Copán were put up around A.D. 800, and the last Long Count date on an incomplete altar possibly bearing a king’s name has the date of A.D. 822.
Archaeological surveys of different types of habitats in the Copán Valley show that they were occupied in a regular sequence. The first area farmed was the large Copán pocket of valley bottomland, followed by occupation of the other four bottomland pockets. During that time the human population was growing, but there was not yet occupation of the hills. Hence that increased population must have been accommodated by intensifying production in the bottomland pockets by some combination of shorter fallow periods, double-cropping, and possibly some irrigation.
By the year A.D. 650, people started to occupy the hill slopes, but those hill sites were cultivated only for about a century. The percentage of Copán’s total population that was in the hills, rather than in the valleys, reached a maximum of 41%, then declined until the population again became concentrated in the valley pockets. What caused that pullback of population from the hills? Excavation of the foundations of buildings in the valley floor showed that they became covered with sediment during the 8th century, meaning that the hill slopes were getting eroded and probably also leached of nutrients. Those acidic infertile hill soils were being carried down into the valley and blanketing the more fertile valley soils, where they would have reduced agricultural yields. This ancient quick abandonment of hillsides coincides with modern Maya experience that fields in the hills have low fertility and that their soils become rapidly exhausted.
The reason for that erosion of the hillsides is clear: the forests that formerly covered them and protected their soils were being cut down. Dated pollen samples show that the pine forests originally covering the upper elevations of the hill slopes were eventually all cleared. Calculation suggests that most of those felled pine trees were being burned for fuel, while the rest were used for construction or for making plaster. At other Maya sites from the pre-Classic era, where the Maya went overboard in lavish use of thick plaster on buildings, plaster production may have been a major cause of deforestation. Besides causing sediment accumulation in the valleys and depriving valley inhabitants of wood supplies, that deforestation may have begun to cause a “man-made drought” in the valley bottom, because forests play a major role in water cycling, such that massive deforestation tends to result in lowered rainfall.
Hundreds of skeletons recovered from Copán archaeological sites have been studied for signs of disease and malnutrition, such as porous bones and stress lines in the teeth. These skeletal signs show that the health of Copán’s inhabitants deteriorated from A.D. 650 to 850, both among the elite and among the commoners, although the health of commoners was worse.
Recall that Copán’s population was increasing steeply while the hills were being occupied. The subsequent abandonment of all of those fields in the hills meant that the burden of feeding the extra population formerly dependent on the hills now fell increasingly on the valley floor, and that more and more people were competing for the food grown on those 10 square miles of valley bottomland. That would have led to fighting among the farmers themselves for the best land, or for any land, just as in modern Rwanda (Chapter 10). Because Copán’s king was failing to deliver on his promises of rain and prosperity in return for the power and luxuries that he claimed, he would have been the scapegoat for this agricultural failure. That may explain why the last that we hear from any Copán king is A.D. 822 (that last Long Count date at Copán), and why the royal palace was burned around A.D. 850. However, the continued production of some luxury goods suggest that some nobles managed to carry on with their lifestyle after the king’s downfall, until ar
ound A.D. 975.
To judge from datable pieces of obsidian, Copán’s total population decreased more gradually than did its signs of kings and nobles. The estimated population in the year A.D. 950 was still around 15,000, or 54% of the peak population of 27,000. That population continued to dwindle, until there are no more signs of anyone in the Copán Valley by around A.D. 1250. The reappearance of pollen from forest trees thereafter provides independent evidence that the valley became virtually empty of people, and that the forests could at last begin to recover.
The general outline of Maya history that I have just related, and the example of Copán’s history in particular, illustrates why we talk about “the Maya collapse.” But the story grows more complicated, for at least five reasons.