The Language Instinct: How the Mind Creates Language
But even when they know the facts, many people share the columnists’ incredulity. Could there really be a gene tied to something as specific as grammar? The very idea is an assault on the deeply rooted belief that the brain is a general-purpose learning device, void and without form prior to experience of the surrounding culture. And if there are grammar genes, what do they do? Build the grammar organ, presumably—a metaphor, from Chomsky, that many find just as preposterous.
But if there is a language instinct, it has to be embodied somewhere in the brain, and those brain circuits must have been prepared for their role by the genes that built them. What kind of evidence could show that there are genes that build parts of brains that control grammar? The ever-expanding toolkit of the geneticist and neurobiologist is mostly useless. Most people do not want their brains impaled by electrodes, injected with chemicals, rearranged by surgery, or removed for slicing and staining. (As Woody Allen said, “The brain is my second-favorite organ.”) So the biology of language remains poorly understood. But accidents of nature and ingenious indirect techniques have allowed neurolinguists to learn a surprising amount. Let’s try to home in on the putative grammar gene, beginning with a bird’s-eye view of the brain and zooming in on smaller and smaller components.
We can narrow down our search at the outset by throwing away half the brain. In 1861 the French physician Paul Broca dissected the brain of an aphasic patient who had been nicknamed “Tan” by hospital workers because that was the only syllable he uttered. Broca discovered a large cyst producing a lesion in Tan’s left hemisphere. The next eight cases of aphasia he observed also had left-hemisphere lesions, too many to be attributed to chance. Broca concluded that “the faculty for articulate language” resides in the left hemisphere.
In the 130 years since, Broca’s conclusion has been confirmed by many kinds of evidence. Some of it comes from the convenient fact that the right half of the body and of perceptual space is controlled by the left hemisphere of the brain and vice versa. Many people with aphasia suffer weakness or paralysis on the right side, including Tan and the recovered aphasic of Chapter 2, who awoke thinking that he had slept on his right arm. The link is summed up in Psalms 137:5–6:
If I forget thee, O Jerusalem, let my right hand forget her cunning.
If I do not remember thee, let my tongue cleave to the roof of my mouth.
Normal people recognize words more accurately when the words are flashed to the right side of their visual field than when they are flashed to the left, even when the language is Hebrew, which is written from right to left. When different words are presented simultaneously to the two ears, the person can make out the word coming into the right ear better. In some cases of otherwise incurable epilepsy, surgeons disconnect the two cerebral hemispheres by cutting the bundle of fibers running between them. After surgery the patients live completely normal lives, except for a subtlety discovered by the neuroscientist Michael Gazzaniga: when the patients are kept still, they can describe events taking place in their right visual field and can name objects in their right hand, but cannot describe events taking place in their left visual field or name objects placed in their left hand (though the right hemisphere can display its awareness of those events by nonverbal means like gesturing and pointing). The left half of their world has been disconnected from their language center.
When neuroscientists look directly at the brain, using a variety of techniques, they can actually see language in action in the left hemisphere. The anatomy of the normal brain—its bulges and creases—is slightly asymmetrical. In some of the regions associated with language, the differences are large enough to be seen with the naked eye. Computerized Axial Tomography (CT or CAT) and Magnetic Resonance Imaging (MRI) use a computer algorithm to reconstruct a picture of the living brain in cross-section. Aphasics’ brains almost always show lesions in the left hemisphere. Neurologists can temporarily paralyze one hemisphere by injecting sodium amytal into the carotid artery. A patient with a sleeping right hemisphere can talk; a patient with a sleeping left hemisphere cannot. During brain surgery, patients can remain conscious under local anesthetic because the brain has no pain receptors. The neurosurgeon Wilder Penfield found that small electric shocks to certain parts of the left hemisphere could silence the patient in mid-sentence. (Neurosurgeons do these manipulations not out of curiosity but to be sure that they are not cutting out vital parts of the brain along with the diseased ones.) In a technique used on normal research subjects, electrodes are pasted all over the scalp, and the subjects’ electroencephalograms (EEG’s) are recorded as they read or hear words. There are recognizable jumps in the electrical signal that are synchronized with each word, and they are more prominent in the electrodes pasted on the left side of the skull than in those on the right (though this finding is tricky to interpret, because an electrical signal generated deep in one part of the brain can radiate out of another part).
In a new technique called Positron Emission Tomography (PET), a volunteer is injected with mildly radioactive glucose or water, or inhales a radioactive gas, comparable in dosage to a chest X-ray, and puts his head inside a ring of gamma-ray detectors. The parts of the brain that are more active burn more glucose and have more oxygenated blood sent their way. Computer algorithms can reconstruct which parts of the brain are working harder from the pattern of radiation that emanates from the head. An actual picture of metabolic activity within a slice of the brain can be displayed in a computer-generated photograph, with the more active areas showing up in bright reds and yellows, the quiet areas in dark indigos. By subtracting an image of the brain when its owner is watching meaningless patterns or listening to meaningless sounds from an image when the owner is understanding words or speech, one can see which areas of the brain “light up” during language processing. The hot spots, as expected, are on the left side.
What exactly is engaging the left hemisphere? It is not merely speechlike sounds, or wordlike shapes, or movements of the mouth, but abstract language. Most aphasic people—Mr. Ford from Chapter 2, for example—can blow out candles and suck on straws, but their writing suffers as much as their speech; this shows that it is not mouth control but language control that is damaged. Some aphasics remain fine singers, and many are superb at swearing. In perception, it has long been known that tones are discriminated better when they are played to the left ear, which is connected most strongly to the right hemisphere. But this is only true if the tones are perceived as musical sounds like hums; when the ears are Chinese or Thai and the same tones are features of phonemes, the advantage is to the right ear and the left hemisphere it feeds.
If a person is asked to shadow someone else’s speech (repeat it as the talker is talking) and, simultaneously, to tap a finger to the right or the left hand, the person has a harder time tapping with the right finger than with the left, because the right finger competes with language for the resources of the left hemisphere. Remarkably, the psychologist Ursula Bellugi and her colleagues have shown that the same thing happens when deaf people shadow one-handed signs in American Sign Language: they find it harder to tap with their right finger than with their left finger. The gestures must be tying up the left hemispheres, but it is not because they are gestures; it is because they are linguistic gestures. When a person (either a signer or a speaker) has to shadow a goodbye wave, a thumbs-up sign, or a meaningless gesticulation, the fingers of the right hand and the left hand are slowed down equally.
The study of aphasia in the deaf leads to a similar conclusion. Deaf signers with damage to their left hemispheres suffer from forms of sign aphasia that are virtually identical to the aphasia of hearing victims with similar lesions. For example, Mr. Ford’s sign-language counterparts are unimpaired at nonlinguistic tasks that place similar demands on the eyes and hands, such as gesturing, pantomiming, recognizing faces, and copying designs. Injuries to the right hemisphere of deaf signers produce the opposite pattern: they remain flawless at signing but have difficulty performing vis
uospatial tasks, just like hearing patients with injured right hemispheres. It is a fascinating discovery. The right hemisphere is known to specialize in visuospatial abilities, so one might have expected that sign language, which depends on visuospatial abilities, would be computed in the right hemisphere. Bellugi’s findings show that language, whether by ear and mouth or by eye and hand, is controlled by the left hemisphere. The left hemisphere must be handling the abstract rules and trees underlying language, the grammar and the dictionary and the anatomy of words, and not merely the sounds and the mouthings at the surface.
Why is language so lopsided? A better question is, why is the rest of a person so symmetrical? Symmetry is an inherently improbable arrangement of matter. If you were to fill in the squares of an 8 × 8 checkerboard at random, the odds are less than one in a billion that the pattern would be bilaterally symmetrical. The molecules of life are asymmetrical, as are most plants and many animals. Making a body bilaterally symmetrical is difficult and expensive. Symmetry is so demanding that among animals with a symmetrical design, any disease or weakness can disrupt it. As a result, organisms from scorpion flies to barn swallows to human beings find symmetry sexy (a sign of a fit potential mate) and gross asymmetry a sign of deformity. There must be something in an animal’s lifestyle that makes a symmetrical design worth its price. The crucial lifestyle feature is mobility: the species with bilaterally symmetrical body plans are the ones that are designed to move in straight lines. The reasons are obvious. A creature with an asymmetrical body would veer off in circles, and a creature with asymmetrical sense organs would eccentrically monitor one side of its body even though equally interesting things can happen on either side. Though locomoting organisms are symmetrical side-to-side, they are not (apart from Dr. Dolittle’s Push-mi-pull-you) symmetrical front-and-back. Thrusters apply force best in one direction, so it is easier to build a vehicle that can move in one direction and turn than a vehicle that can move equally well in forward and reverse (or that can scoot off in any direction at all, like a flying saucer). Organisms are not symmetrical up-and-down because gravity makes up different from down.
The symmetry in sensory and motor organs is reflected in the brain, most of which, at least in nonhumans, is dedicated to processing sensation and programming action. The brain is divided into maps of visual, auditory, and motor space that literally reproduce the structure of real space: if you move over a small amount in the brain, you find neurons that correspond to a neighboring region of the world as the animal senses it. So a symmetrical body and a symmetrical perceptual world is controlled by a brain that is itself almost perfectly symmetrical.
No biologist has explained why the left brain controls right space and vice versa. It took a psycholinguist, Marcel Kinsbourne, to come up with the only speculation that is even remotely plausible. All bilaterally symmetrical invertebrates (worms, insects, and so on) have the more straightforward arrangement in which the left side of the central nervous system controls the left side of the body and the right side controls the right side. Most likely, the invertebrate that was the ancestor of the chordates (animals with a stiffening rod around their spinal cords, including fish, amphibians, birds, reptiles, and mammals) had this arrangement as well. But all the chordates have “contralateral” control: right brain controls left body and left brain controls right body. What could have led to the rewiring? Here is Kinsbourne’s idea. Imagine that you are a creature with the left-brain-left-body arrangement. Now turn your head around to look behind you, a full 180 degrees back, like an owl. (Stop at 180 degrees; don’t go around and around like the girl in The Exorcist.) Now imagine that your head is stuck in that position. Your nerve cables have been given a half-twist, so the left brain would control your right body and vice versa.
Now, Kinsbourne is not suggesting that some primordial rubbernecker literally got its head stuck, but that changes in the genetic instructions for building the creature resulted in the half-twist during embryonic development—a torsion that one can actually see happening during the development of snails and some flies. This may sound like a perverse way to build an organism, but evolution does it all the time, because it never works from a fresh drawing board but has to tinker with what is already around. For example, our sadistically designed S-shaped spines are the product of bending and straightening the arched backbones of our quadrupedal forebears. The Picassoesque face of the flounder was the product of warping the head of a kind of fish that had opted to cling sideways to the ocean floor, bringing around the eye that had been staring uselessly into the sand. Since Kinsbourne’s hypothetical creature left no fossils and has been extinct for over half a billion years, no one knows why it would have undergone the rotation. (Perhaps one of its ancestors had changed its posture, like the flounder, and subsequently righted itself. Evolution, which has no foresight, may have put its head back into alignment with its body by giving the head another quarter-twist in the same direction, rather than by the more sensible route of undoing the original quarter-twist.) But it does not really matter; Kinsbourne is only proposing that such a rotation must have taken place; he is not claiming he can reconstruct why it happened. (In the case of the snail, where the rotation is accompanied by a bending, like one of the arms of a pretzel, scientists are more knowledgeable. As my old biology textbook explains, “While the head and foot remain stationary, the visceral mass is rotated through an angle of 180°, so that the anus…is carried upward and finally comes to lie [above] the head…. The advantages of this arrangement are clear enough in an animal that lives in a shell with only one opening.”)
In support of the theory, Kinsbourne notes that invertebrates have their main neural cables laid along their bellies and their hearts in their backs, whereas chordates have their neural cables laid along their backs and their hearts in their chests. This is exactly what one would expect from a 180-degree head-to-body turn in the transition from one group to the other, and Kinsbourne could not find any reports of an animal that has only one or two out of the three reversals that his theory says must have happened together. Major changes in body architecture affect the entire design of the animal and can be very difficult to undo. We are the descendants of that twisted creature, and half a billion years later, a stroke in the left hemisphere leaves the right arm tingly.
The benefits of a symmetrical body plan all have to do with sensing and moving in the bilaterally indifferent environment. For body systems that do not interact directly with the environment, the symmetrical blueprint can be overridden. Internal organs such as the heart, liver, and stomach are good examples; they are not in contact with the layout of the external world, and they are grossly asymmetrical. The same thing happens on a much smaller scale in the microscopic circuitry of the brain.
Think about the act of deliberately manipulating some captive object. The actions are not being keyed to the environment; the manipulator is putting the object anywhere it wants. So the organism’s forelimbs, and the brain centers controlling them, do not have to be symmetrical in order to react to events appearing unpredictably on one side or the other; they can be tailored to whatever configuration is most efficient to carry out the action. Manipulating an object often benefits from a division of labor between the limbs, one holding the object, the other acting on it. The result is the asymmetrical claws of lobsters, and the asymmetrical brains that control paws and hands in a variety of species. Humans are by far the most adept manipulators in the animal kingdom, and we are the species that displays the strongest and most consistent limb preference. Ninety percent of people in all societies and periods in history are right-handed, and most are thought to possess one or two copies of a dominant gene that imposes the right-hand (left-brain) bias. Possessors of two copies of the recessive version of the gene develop without this strong right-hand bias; they turn into the rest of the right-handers and into the left-handers and ambidextrics.
Processing information that is spread out over time but not space is another function where symmetry s
erves no purpose. Given a certain amount of neural tissue necessary to perform such a function, it makes more sense to put it all in one place with short interconnections, rather than have half of it communicate with the other half over a slow, noisy, long-distance connection between the hemispheres. Thus the control of song is strongly lateralized in the left hemispheres of many birds, and the production and recognition of calls and squeaks is somewhat lateralized in monkeys, dolphins, and mice.
Human language may have been concentrated in one hemisphere because it, too, is coordinated in time but not environmental space: words are strung together in order but do not have to be aimed in various directions. Possibly, the hemisphere that already contained computational microcircuitry necessary for control of the fine, deliberate, sequential manipulation of captive objects was the most natural place in which to put language, which also requires sequential control. In the lineage leading to humans, that happened to be the left hemisphere. Many cognitive psychologists believe that a variety of mental processes requiring sequential coordination and arrangement of parts co-reside in the left hemisphere, such as recognizing and imagining multipart objects and engaging in step-by-step logical reasoning. Gazzaniga, testing the two hemispheres of a split-brain patient separately, found that the newly isolated left hemisphere had the same IQ as the entire connected brain before surgery!