The Singularity Is Near: When Humans Transcend Biology
My own view is consistent with Gardner’s belief in intelligence as the most important phenomenon in the universe. I do have a disagreement with Gardner on his suggestion of a “vast . . . transterrestrial community of lives and intelligences spread across billions of galaxies.” We don’t yet see evidence that such a community beyond Earth exists. The community that matters may be just our own unassuming civilization here. As I pointed out above, although we can fashion all kinds of reasons why each particular intelligent civilization may remain hidden from us (for example, they destroyed themselves, or they have decided to remain invisible or stealthy, or they’ve switched all of their communications away from electromagnetic transmissions, and so on), it is not credible to believe that every single civilization out of the billions that should be there (according to the SETI assumption) has some reason to be invisible.
The Ultimate Utility Function. We can fashion a conceptual bridge between Susskind’s and Smolin’s idea of black holes being the “utility function” (the property being optimized in an evolutionary process) of each universe in the multiverse and the conception of intelligence as the utility function that I share with Gardner. As I discussed in chapter 3, the computational power of a computer is a function of its mass and its computational efficiency. Recall that a rock has significant mass but extremely low computational efficiency (that is, virtually all of the transactions of its particles are effectively random). Most of the particle interactions in a human are random also, but on a logarithmic scale humans are roughly halfway between a rock and the ultimate small computer.
A computer in the range of the ultimate computer has a very high computational efficiency. Once we achieve an optimal computational efficiency, the only way to increase the computational power of a computer would be to increase its mass. If we increase the mass enough, its gravitational force becomes strong enough to cause it to collapse into a black hole. So a black hole can be regarded as the ultimate computer.
Of course, not any black hole will do. Most black holes, like most rocks, are performing lots of random transactions but no useful computation. But a well-organized black hole would be the most powerful conceivable computer in terms of cps per liter.
Hawking Radiation. There has been a long-standing debate about whether or not we can transmit information into a black hole, have it usefully transformed, and then retrieve it. Stephen Hawking’s conception of transmissions from a black hole involves particle-antiparticle pairs that are created near the event horizon (the point of no return near a black hole, beyond which matter and energy are unable to escape). When this spontaneous creation occurs, as it does everywhere in space, the particle and antiparticle travel in opposite directions. If one member of the pair travels into the event horizon (never to be seen again), the other will fly away from the black hole.
Some of these particles will have sufficient energy to escape its gravitation and result in what has been called Hawking radiation.96 Prior to Hawking’s analysis it was thought that black holes were, well, black; with his insight we realized that they actually give off a continual shower of energetic particles. But according to Hawking this radiation is random, since it originates from random quantum events near the event boundary. So a black hole may contain an ultimate computer, according to Hawking, but according to his original conception, no information can escape a black hole, so this computer could never transmit its results.
In 1997 Hawking and fellow physicist Kip Thorne (the wormhole scientist) made a bet with California Institute of Technology’s John Preskill. Hawking and Thorne maintained that the information that entered a black hole was lost, and any computation that might occur inside the black hole, useful or otherwise, could never be transmitted outside of it, whereas Preskill maintained that the information could be recovered.97 The loser was to give the winner some useful information in the form of an encyclopedia.
In the intervening years the consensus in the physics community steadily moved away from Hawking, and on July 21, 2004, Hawking admitted defeat and acknowledged that Preskill had been correct after all: that information sent into a black hole is not lost. It could be transformed inside the black hole and then transmitted outside it. According to this understanding, what happens is that the particle that flies away from the black hole remains quantum entangled with its antiparticle that disappeared into the black hole. If that antiparticle inside the black hole becomes involved in a useful computation, then these results will be encoded in the state of its tangled partner particle outside of the black hole.
Accordingly Hawking sent Preskill an encyclopedia on the game of cricket, but Preskill rejected it, insisting on a baseball encyclopedia, which Hawking had flown over for a ceremonial presentation.
Assuming that Hawking’s new position is indeed correct, the ultimate computers that we can create would be black holes. Therefore a universe that is well designed to create black holes would be one that is well designed to optimize its intelligence. Susskind and Smolin argued merely that biology and black holes both require the same kind of materials, so a universe that was optimized for black holes would also be optimized for biology. Recognizing that black holes are the ultimate repository of intelligent computation, however, we can conclude that the utility function of optimizing black-hole production and that of optimizing intelligence are one and the same.
Why Intelligence Is More Powerful than Physics. There is another reason to apply an anthropic principle. It may seem remarkably unlikely that our planet is in the lead in terms of technological development, but as I pointed out above, by a weak anthropic principle, if we had not evolved, we would not be here discussing this issue.
As intelligence saturates the matter and energy available to it, it turns dumb matter into smart matter. Although smart matter still nominally follows the laws of physics, it is so extraordinarily intelligent that it can harness the most subtle aspects of the laws to manipulate matter and energy to its will. So it would at least appear that intelligence is more powerful than physics. What I should say is that intelligence is more powerful than cosmology. That is, once matter evolves into smart matter (matter fully saturated with intelligent processes), it can manipulate other matter and energy to do its bidding (through suitably powerful engineering). This perspective is not generally considered in discussions of future cosmology. It is assumed that intelligence is irrelevant to events and processes on a cosmological scale.
Once a planet yields a technology-creating species and that species creates computation (as has happened here), it is only a matter of a few centuries before its intelligence saturates the matter and energy in its vicinity, and it begins to expand outward at at least the speed of light (with some suggestions of circumventing this limit). Such a civilization will then overcome gravity (through exquisite and vast technology) and other cosmological forces—or, to be fully accurate, it will maneuver and control these forces—and engineer the universe it wants. This is the goal of the Singularity.
A Universe-Scale Computer. How long will it take for our civilization to saturate the universe with our vastly expanded intelligence? Seth Lloyd estimates there are about 1080 particles in the universe, with a theoretical maximum capacity of about 1090 cps. In other words a universe-scale computer would be able to compute at 1090 cps.98 To arrive at those estimates, Lloyd took the observed density of matter—about one hydrogen atom per cubic meter—and from this figure computed the total energy in the universe. Dividing this energy figure by the Planck constant, he got about 1090 cps. The universe is about 1017 seconds old, so in round numbers there have been a maximum of about 10107 calculations in it thus far. With each particle able to store about 1010 bits in all of its degrees of freedom (including its position, trajectory, spin, and so on), the state of the universe represents about 1090 bits of information at each point in time.
We do not need to contemplate devoting all of the mass and energy of the universe to computation. If we were to apply 0.01 percent, that would still leave 99.99 percent o
f the mass and energy unmodified, but would still result in a potential of about 1086 cps. Based on our current understanding, we can only approximate these orders of magnitude. Intelligence at anything close to these levels will be so vast that it will be able to perform these engineering feats with enough care so as not to disrupt whatever natural processes it considers important to preserve.
The Holographic Universe. Another perspective on the maximum information storage and processing capability of the universe comes from a speculative recent theory of the nature of information. According to the “holographic universe” theory the universe is actually a two-dimensional array of information written on its surface, so its conventional three-dimensional appearance is an illusion.99 In essence, the universe, according to this theory, is a giant hologram.
The information is written at a very fine scale, governed by the Planck constant. So the maximum amount of information in the universe is its surface area divided by the square of the Planck constant, which comes to about 10120 bits. There does not appear to be enough matter in the universe to encode this much information, so the limits of the holographic universe may be higher than what is actually feasible. In any event the order of magnitude of the number of orders of magnitudes of these various estimates is in the same range. The number of bits that a universe reorganized for useful computation will be able to store is 10 raised to a power somewhere between 80 and 120.
Again, our engineering, even that of our vastly evolved future selves, will probably fall short of these maximums. In chapter 2 I showed how we progressed from 10−5 to 108 cps per thousand dollars during the twentieth century. Based on a continuation of the smooth, doubly exponential growth that we saw in the twentieth century, I projected that we would achieve about 1060 cps per thousand dollars by 2100. If we estimate a modest trillion dollars devoted to computation, that’s a total of about 1069 cps by the end of this century. This can be achieved with the matter and energy in our solar system.
To get to around 1090 cps requires expanding through the rest of the universe. Continuing the double-exponential growth curve shows that we can saturate the universe with our intelligence well before the end of the twenty-second century, provided that we are not limited by the speed of light. Even if the up-to-thirty additional powers of ten suggested by the holographic-universe theory are borne out, we still reach saturation by the end of the twenty-second century.
Again, if it is at all possible to circumvent the speed-of-light limitation, the vast intelligence we will have with solar system–scale intelligence will be able to design and implement the requisite engineering to do so. If I had to place a bet, I would put my money on the conjecture that circumventing the speed of light is possible and that we will be able to do this within the next couple of hundred years. But that is speculation on my part, as we do not yet understand these issues sufficiently to make a more definitive statement. If the speed of light is an immutable barrier, and no shortcuts through wormholes exist that can be exploited, it will take billions of years, not hundreds, to saturate the universe with our intelligence, and we will be limited to our light cone within the universe. In either event the exponential growth of computation will hit a wall during the twenty-second century. (But what a wall!)
This large difference in timespans—hundreds of years versus billions of years (to saturate the universe with our intelligence)—demonstrates why the issue of circumventing the speed of light will become so important. It will become a primary preoccupation of the vast intelligence of our civilization in the twenty-second century. That is why I believe that if wormholes or other circumventing means are feasible, we will be highly motivated to find and exploit them.
If it is possible to engineer new universes and establish contact with them, this would provide yet further means for an intelligent civilization to continue its expansion. Gardner’s view is that the influence of an intelligent civilization in creating a new universe lies in setting the physical laws and constants of the baby universe. But the vast intelligence of such a civilization may figure out ways to expand its own intelligence into a new universe more directly. The idea of spreading our intelligence beyond this universe is, of course, speculative, as none of the multiverse theories allows for communication from one universe to another, except for passing on basic laws and constants.
Even if we are limited to the one universe we already know about, saturating its matter and energy with intelligence is our ultimate fate. What kind of universe will that be? Well, just wait and see.
MOLLY 2004: So when the universe reaches Epoch Six [the stage at which the non-biological portion of our intelligence spreads through the universe], what’s it going to do?
CHARLES DARWIN: I’m not sure we can answer that. As you said, it’s like bacteria asking one another what humans will do.
MOLLY 2004: So these Epoch Six entities will consider us biological humans to be like bacteria?
GEORGE 2048: That’s certainly not how I think of you.
MOLLY 2104: George, you’re only Epoch Five, so I don’t think that answers the question.
CHARLES: Getting back to the bacteria, what they would say, if they could talk—
MOLLY 2004: —and think.
CHARLES: Yes, that, too. They would say that humans will do the same things as we bacteria do—namely, eat, avoid danger, and procreate.
MOLLY 2104: Oh, but our procreation is so much more interesting.
MOLLY 2004: Actually, Molly of the future, it’s our human pre-Singularity procreation that’s interesting. Your virtual procreation is, actually, a lot like that of the bacteria. Sex has nothing to do with it.
MOLLY 2104: It’s true we’ve separated sexuality from reproduction, but that’s not exactly new to human civilization in 2004. And besides, unlike bacteria, we can change ourselves.
MOLLY 2004: Actually, you’ve separated change and evolution from reproduction as well.
MOLLY 2104: That was also essentially true in 2004.
MOLLY 2004: Okay, okay. But about your list, Charles, we humans also do things like create art and music. That kind of separates us from other animals.
GEORGE 2048: Indeed, Molly, that is fundamentally what the Singularity is about. The Singularity is the sweetest music, the deepest art, the most beautiful mathematics. . ..
MOLLY 2004: I see, so the music and art of the Singularity will be to my era’s music and art as circa 2004 music and art are to . . .
NED LUDD: The music and art of bacteria.
MOLLY 2004: Well, I’ve seen some artistic mold patterns.
NED: Yes, but I’m sure you didn’t revere them.
MOLLY 2004: No, actually, I wiped them away.
NED: Okay, my point then.
MOLLY 2004: I’m still trying to envision what the universe will be doing in Epoch Six.
TIMOTHY LEARY: The universe will be flying like a bird.
MOLLY 2004: But what is it flying in? I mean it’s everything.
TIMOTHY: That’s like asking, What is the sound of one hand clapping?
MOLLY 2004: Hmmm, so the Singularity is what the Zen masters had in mind all along.
CHAPTER SEVEN
* * *
Ich bin ein Singularitarian
The most common of all follies is to believe passionately in the palpably not true.
—H. L. MENCKEN
Philosophies of life rooted in centuries-old traditions contain much wisdom concerning personal, organizational, and social living. Many of us also find shortcomings in those traditions. How could they not reach some mistaken conclusions when they arose in pre-scientific times? At the same time, ancient philosophies of life have little or nothing to say about fundamental issues confronting us as advanced technologies begin to enable us to change our identity as individuals and as humans and as economic, cultural, and political forces change global relationships.
—MAX MORE, “PRINCIPLES OF EXTROPY”
The world does not need another totalistic dogma.
 
; —MAX MORE, “PRINCIPLES OF EXTROPY”
Yes, we have a soul. But it’s made of lots of tiny robots.
—GIULIO GIORELLI
Substrate is morally irrelevant, assuming it doesn’t affect functionality or consciousness. It doesn’t matter, from a moral point of view, whether somebody runs on silicon or biological neurons (just as it doesn’t matter whether you have dark or pale skin). On the same grounds, that we reject racism and speciesism, we should also reject carbon-chauvinism, or bioism.
—NICK BOSTROM, “ETHICS FOR INTELLIGENT MACHINES: A PROPOSAL, 2001”
Philosophers have long noted that their children were born into a more complex world than that of their ancestors. This early and perhaps even unconscious recognition of accelerating change may have been the catalyst for much of the utopian, apocalyptic, and millennialist thinking in our Western tradition. But the modern difference is that now everyone notices the pace of progress on some level, not simply the visionaries.
—JOHN SMART
A Singularitarian is someone who understands the Singularity and has reflected on its meaning for his or her own life.
I have been engaged in such reflection for several decades. Needless to say, it’s not a process that one can ever complete. I started pondering the relationship of our thinking to our computational technology as a teenager in the 1960s. In the 1970s I began to study the acceleration of technology, and I wrote my first book on the subject in the late 1980s. So I’ve had time to contemplate the impact on society—and on myself—of the overlapping transformations now under way.
George Gilder has described my scientific and philosophical views as “a substitute vision for those who have lost faith in the traditional object of religious belief.”1 Gilder’s statement is understandable, as there are at least apparent similarities between anticipation of the Singularity and anticipation of the transformations articulated by traditional religions.