The Age of Wonder
9
Bristol also saw the end of a scientific love affair. After some eighteen months of extensive experiments on nitrous oxide in the Dowry Square laboratory, Davy had been forced to conclude that the gas, remarkable as it was, could not be used for therapeutic purposes. This was his private opinion, although no such explicit statement was published in Researches. For Thomas Beddoes this was a crushing disappointment, particularly as it was exactly what Joseph Banks had always predicted. Banks had written to James Watt: ‘in the case of Dr Beddoes’s project — I do not fully understand it, & … I do not expect any beneficial consequences will be derived from its being carried into execution.’128 It looked as if Beddoes’s young protégé had inadvertently undermined the entire raison d’être of the Pneumatic Institute.
Yet there was one major scientific discovery which hovered tantalisingly close to Davy’s grasp. Had he fully seized it, he would have made himself, Beddoes and the Pneumatic Institute famous forever. Though nitrous oxide could not cure physical disease, it could do something just as valuable: it could temporarily suspend physical pain, or at least the sensation of pain. The gas provided the key to an entirely new science, that of anaesthetics: literally, ‘the negation or blocking of feelings’.
Characteristically, Davy pounced upon the new concept, asserting in his laboratory notebook that the gas could certainly be used for suppressing even ‘intense physical pain’.129 He speculated on the physiological mechanism: ‘Sensible pain is not perceived after the powerful action of nitrous oxide because it produces for the time a momentary condition of other parts of the nerve connected with pleasure.’130 He successfully tried treating his own toothache from impacted wisdom teeth with nitrous oxide. ‘The pain diminished after the first four or five inspirations.’ But the effect did not last, and he did not take the next logical step of having the offending teeth removed while under the influence of nitrous oxide. The gas was seen as blotting out the consciousness of pain with pleasure, rather than suspending consciousness itself. Yet in many of his extreme experiments Davy had deliberately pushed himself into unconsciousness, and he knew this could be done without harm.
Later, writing up his experiments for Researches, he more explicitly stated the gas’s surgical potential: ‘As nitrous oxide in its extensive operation appears capable of destroying physical pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place.’131 He added the caution about bleeding not to limit the gravity of operations in which anaesthesia might be applied, but because he believed nitrous oxide was only absorbed through venous blood. It might therefore become ineffective during a major operation when extensive haemorrhaging took place.
Part of Davy’s originality was simply to conceive of the radical idea of pain-free surgery. He later had long discussions with Coleridge about the nature and significance of human pain. Coleridge wondered, for example, why God might have created a world in which human childbirth, one of the great productive aims of nature, was so painful as well as so dangerous for women.132 This was a prophetic speculation, as it turned out, for nitrous oxide mixed with oxygen eventually became one of the standard anaesthetic procedures used during labour, especially if difficult or prolonged.
When he read Researches in December 1800, sent to him by Longman with the new edition of Lyrical Ballads, Coleridge wrote to Davy wondering if he had had further communication with the leading London surgeon Sir Anthony Carlisle, ‘concerning Pain’, as they had all once discussed it during his London visit. ‘It is a subject which exceedingly interests me — I want to read something by somebody expressly on Pain, if only to give arrangement to my own thoughts, though if it were well treated, I have little doubt it would revolutionise them.’ He later urged Davy himself to write such a philosophical treatise on pain.133
Many standard operations in the early nineteenth century — being cut for kidney stone, having teeth removed, or a wounded limb amputated — were unimaginably painful. The pain also caused shock, which itself could kill. The only known form of painkiller — the soldier’s use of alcohol — was largely a method of controlling terror and deadening shock, not true anaesthesia.
But having made his momentous suggestion, Davy failed to pursue it. Characteristically, he rushed impetuously on to other discoveries. Although he published his conclusions, neither he nor Beddoes saw that the immense possibilities of anaesthesia were taken up. The loss to human well-being, in the alleviation of terror and suffering on the operating table for another two generations, was incalculable. Fanny Burney’s account of her own mastectomy — having a breast removed, without anaesthetics, by a military surgeon in her Paris apartment in 1811 — is perhaps more shattering than any account of a limb amputated on the battlefield during the Napoleonic Wars.
It would seem that Davy missed the greatest medical opportunity of his early career. As late as 1831, his polemical biographer J.A. Paris dismissed the whole nitrous oxide experiment as absurd. ‘It will be admitted that there must have been something singularly ludicrous in the whole exhibition. Imagine a party of grave philosophers, with bags of silk tied to their mouths, stamping, roaring and laughing about the apartment.’ 134 Nitrous oxide only began to be tried again experimentally some forty years later. This was in America, when Dr Horace Wells had a tooth extracted under the gas during a demonstration lecture in Connecticut in December 1844. Wells awoke, announced that he had not felt ‘a pin-prick’, and proclaimed ‘a new era in tooth-pulling’.135
But it was quite another chemical, ether, that provided the first true anaesthesia for major operations. The American surgeon William Thomas Morton successfully amputated a man’s leg under ether at the Massachusetts General Hospital on 16 October 1846. Two months later, on 31 December, a British surgeon, Mr Lansdowne, performed a similar amputation at the Bristol General Hospital. Thereafter anaesthesia by ether was used widely in both the Crimean and the American Civil War. But the final acceptance of anaesthesia in Britain did not really come until Queen Victoria admitted to having taken a whiff of chloroform during the birth of her son Prince Leopold in April 1853.
Yet the historic Bristol operation of December 1846 suggests that Davy’s speculation about anaesthesia did eventually bear fruit. The chemist supplying the ether, William Herapath, sent a detailed description of the anaesthetic procedure to the Bristol Mirror in January 1847. It is clear from his closing remarks that he knew of Davy’s Researches, still a legend in Bristol, and had been both inspired and cautioned by them: ‘I have no doubt the inspiration of nitrous oxide (laughing gas) would have asimilar effect upon the nerves of sensation as the vapour of ether, as I have noticed that persons under its influence are totally insensible to pain; but I do not think it would be advisable to use it in surgical cases, from its frequently producing an ungovernable disposition to muscular exertion, which would render the patient unsteady and embarrass the operator.’136 ♣
Before leaving Bristol, Davy wrote a long letter of thanks to his old benefactor, John Tonkin in Penzance. Besides expressing his gratitude and his determination to do ‘something for the public good’, he included an interesting tour d’horizon of scientific developments as he saw them in January 1801. While public affairs, economic hardship and the war with France filled him with ‘confusion’ and dismay, the immense possibilities of scientific research had never looked brighter. The cowpox inoculation, pioneered by Dr Edward Jenner, was becoming general ‘not in England alone, but over the whole of Europe’, and promised to annihilate smallpox. Galvanism held out immense possibilities, and ‘promises to unfold some of the laws of our nature’. Even the Pneumatic Institution, ‘in spite of the political odium attached to its founder’, might yet cure some ‘obstinate diseases’. There is no record of what Davy said, or wrote, on these matters to his mentor Dr Beddoes; or to Anna Beddoes.137
10
On Monday, 9 March 1801, Humphry Davy left Bristol to take up his post as Assistant Lecturer in Chemistry and Dire
ctor of the Chemical Laboratory at the Royal Institution, Albemarle Street, London. His salary was £100 per annum, plus ‘coals and candles’ and a small set of attic rooms. This was his first professional scientific post, and he was to remain associated with the Institution for the rest of his life.
Founded only two years previously in 1799, the Institution had originally been conceived by Count Rumford as a centre for displaying the latest mechanical inventions, and providing workshops and lectures for the poor, modelled on his earlier philanthropic ventures in Munich. But under the influence of Cavendish and Banks (who obtained a Royal Charter in January 1800), an ambitious new lecture theatre and laboratory were installed in the new Albemarle Street premises, and the Institution’s emphasis began to move towards original scientific research and ‘regular courses of philosophical lectures and experiments’.
But the Royal Institution had yet to make its mark on London intellectual life, or to find its natural audience — or indeed any significant audience at all — as the founders (and their subscribers) were only too aware. Accordingly, Davy seized his chance, and set out to make a splash with his inaugural lecture on 25 April, choosing the challenging and perplexing subject of ‘Galvanism’. Contrary to expectation, the crowd that gathered that evening was large and fashionable, with Banks and Count Rumford sitting expectantly and alarmingly in the front row.
Davy bounced onto the dais — small, youthful, glowing and enthusiastic. He spoke directly to his audience without notes. He made a thrilling narrative out of each experiment, performing a series of spectacular galvanic demonstrations — sparks, fulminations, explosions — with all the skill of a conjuror. Yet his scientific explanations were simple, logical and lucid. He also had the highly unusual gift of putting the science in its historical and social context: he spoke of ‘the history of galvanism, detailed the successive discoveries’, and its possible future.
He received glowing reports in the press. The Philosophical Magazine described how ‘Mr Davy (late of Bristol)’ presented a wholly new branch of philosophy, ‘we mean the galvanic phenomena’, and held his audience, including many ladies, completely spellbound. ‘Mr Davy, who seems to be very young, acquitted himself admirably well. From the sparkling intelligence of his eye, his animated manner, and the tout ensemble, we have no doubt of him attaining distinguished excellence.’ Banks and Rumford realised they had chosen a winner.138
Later that exciting year, Davy succeeded in publishing his first paper in the Royal Society’s prestigious journal, the Philosophical Transactions. To Banks’s satisfaction it had nothing to do with therapeutic gases, but concerned an improved form of voltaic battery, sufficiently powerful and sustained that it could be used to enhance an entirely new form of chemical analysis.139
But Davy’s departure had a disastrous effect on Thomas Beddoes, who soon after abandoned further research, and returned to more conventional medicine. He converted the Pneumatic Institute into a charitable dispensary, the Preventative Medicine Institution, and published his collected essays as Hygia: Essays Moral and Medical (1802). Though as generous and philanthropic as ever, Beddoes came to believe that all his work on gases had been a failure. His private life was also falling apart. Anna twice left him to pursue Davies Giddy to London, in 1804 and 1806. He still practised as a physician, but was overworked and overweight, and discovered he was suffering from heart disease. In Hygia he gave a sombre definition of ‘the philanthropic doctor’, a far cry from his original ideals: ‘One who is humane in his conduct not so much from sudden impulses of passion and pity, as from a settled conviction of the misery prevailing among mankind.’140
Meanwhile, Davy was going on triumphantly to success in London. He discovered that he was extremely good at lecturing, and what’s more, he adored doing it in front of large audiences. In June 1801 he wrote to his confidant John King at Bristol: ‘My labours are finished for the season as to public experimenting and public communication. My last lecture was on Saturday evening. Nearly 500 persons attended … There was Respiration, Nitrous Oxide, and unbounded Applause. Amen!’
He was now being sought out by members of the scientific community from all over London, and he gave private demonstrations in the basement laboratory of the Institution. Regular parties of philosophers met to inhale the ‘joy inspiring’ gas. ‘It has produced a great sensation. Ca ira!’ Davy presented nitrous oxide to the members of the Askesian Society, but again there was no suggestion of anaesthetic applications. He added dizzily: ‘I dream of greatness and utility — I dream of Science restoring to Nature what Luxury, what Civilization have stolen from her — pure hearts, the forms of angels, bosoms beautiful, and panting with Joy & Hope.’141 Not the least satisfactory part of lecturing was that Davy — still only twenty-two — found that he had attracted a large number of these ‘angels’ to his mixed audiences. From this time on he began to receive invitations, billets-doux, and especially Valentine poems, from young women, many of them anonymous.
He spent the rest of the summer walking in Wales, looking back at his two momentous years in Bristol. He told his old colleague King: ‘I think of you often and my heart often yearns towards the old ideas of Clifton, the Hotwells, and the moral and natural beings that beautify them.’ But he felt that in coming to London he had passed through a necessary period of emotional turmoil and ‘transition’, and that he could never go back. He coded his words to King in chemical jargon: ‘The season that I passed in the country was a season of mental reaction — new ambitions had produced in my mind new hopes and new fears. It was necessary that these hopes and fears should sink into consciousness. Irritability was induced and physical Stimulation was recurred to. You will understand me, and the explanation will plead as an excuse for me that I sometimes drowned moral sympathy in the vicious & vile physical sympathy.’142
The source of physical stimulation was probably nitrous oxide, to which he had become briefly addicted. But what exactly Davy meant by ‘vicious & vile physical sympathy’ is less obvious. He seems to imply unhappy sexual involvement, yet it is hardly the sort of phrase he would have used in relation to Anna Beddoes. Again the question arises, whether young Davy had become entangled with other young women patients at Bristol. Now, at any rate, in London he had left it all behind. ‘I am now a new being. Pardon my egotism. I have moral feelings, deep moral feelings saying to me, “remember your friends”. They are connected with vivid dreams of hope, dreams of … their happiness.’143
On 21 January 1802 he launched a hugely successful second set of lectures on Agricultural Chemistry. Among the most enthusiastic members of his audience was Coleridge, who regularly attended his lectures, filling sixty pages of notebook with materials. ‘I attended Davy’s lectures to enlarge my stock of metaphors,’ Coleridge wrote afterwards. ‘Every subject in Davy’s mind has the principle of Vitality. Living thoughts spring up like Turf under his feet.’144
These lectures opened with Davy’s masterly ‘Discourse Introductory to a Course of Lectures on Chemistry’, which became famous as a Romantic statement of the progressive role of science in society.145 He began by claiming a central place for chemistry in the development of scientific knowledge: botany, zoology, medicine, physiology, agriculture, all ultimately depended on knowledge of chemical processes. He even included the ‘sublime’ science of astronomy, with a salute to Herschel and his superb telescopes and metal alloy mirrors: ‘The progress of the astronomer had been in some measure commensurate with that of the chemical artist, who, indeed, by his perfection of materials used for astronomical apparatus, has afforded the investigating philosopher the means of tracing the revolution of the planets, and of penetrating into space, so as to discover the forms and appearances of the distant parts of the universe.’146
But Davy wished to make even bigger, philosophical claims for the scientific spirit and imagination. Drawing on his previous exchanges with Coleridge about the ‘hopeful’ nature of scientific progress, he put before his audience a vision of human civilisa
tion itself, brought into being by the scientific drive to enquire and create. Science had woken and energised mankind from his primal ignorance and ‘slumber’. This was in effect Davy’s version of the Prometheus myth: ‘Man, in what is called a state of nature, is a creature of almost pure sensation. Called into activity only by positive wants, his life is passed either in satisfying the cravings of the common appetites, or in apathy, or in slumber. Living only in moments he calculates little on futurity. He has no vivid feelings of hope, or thoughts of permanent and powerful actions. And unable to discover causes, he is either harassed by superstitious dreams, or quietly and passively submissive to the mercy of nature and the elements.’
But once woken by science, man is capable of ‘connecting hope with an infinite variety of ideas’. He can provide for his basic needs, and anticipate future enjoyments. Above all science enables him to shape his future, actively. ‘It has bestowed on him powers which may almost be called creative; which have enabled him to modify and change the beings surrounding him, and by his experiments to interrogate nature with power, not simply as a scholar, passive and seeking only to understand her operations, but rather as a master, active with his own instruments.’147
Davy announced to his spellbound audience that they were witnessing the dawn of ‘a new science’, and it would be wonderful: ‘The dim and uncertain twilight of discovery, which gave to objects false or indefinite appearances, has been succeeded by the steady light of truth, which has shown the external world in its distinct forms, and in its true relations to human powers. The composition of the atmosphere, and the properties of gases, have been ascertained; the phenomenon of electricity has been developed; the lightnings have been taken from the clouds; and lastly, a new influence has been discovered, which has enabled man to produce from combinations of dead matter effects which were formerly occasioned only by animal organs.’148