Guns, Germs, and Steel: The Fates of Human Societies
The result was the all-too-familiar course of the last two millennia of South African history. Some of South Africa’s indigenous Khoisan peoples (otherwise known as Hottentots and Bushmen) acquired livestock but remained without agriculture. They became outnumbered and were replaced northeast of the Fish River by black African farmers, whose southward spread halted at that river. Only when European settlers arrived by sea in 1652, bringing with them their Fertile Crescent crop package, could agriculture thrive in South Africa’s Mediterranean zone. The collisions of all those peoples produced the tragedies of modern South Africa: the quick decimation of the Khoisan by European germs and guns; a century of wars between Europeans and blacks; another century of racial oppression; and now, efforts by Europeans and blacks to seek a new mode of coexistence in the former Khoisan lands.
CONTRAST ALSO THE ease of diffusion in Eurasia with its difficulties along the Americas’ north-south axis. The distance between Mesoamerica and South America—say, between Mexico’s highlands and Ecuador’s—is only 1,200 miles, approximately the same as the distance in Eurasia separating the Balkans from Mesopotamia. The Balkans provided ideal growing conditions for most Mesopotamian crops and livestock, and received those domesticates as a package within 2,000 years of its assembly in the Fertile Crescent. That rapid spread preempted opportunities for domesticating those and related species in the Balkans. Highland Mexico and the Andes would similarly have been suitable for many of each other’s crops and domestic animals. A few crops, notably Mexican corn, did indeed spread to the other region in the pre-Columbian era.
But other crops and domestic animals failed to spread between Mesoamerica and South America. The cool highlands of Mexico would have provided ideal conditions for raising llamas, guinea pigs, and potatoes, all domesticated in the cool highlands of the South American Andes. Yet the northward spread of those Andean specialties was stopped completely by the hot intervening lowlands of Central America. Five thousand years after llamas had been domesticated in the Andes, the Olmecs, Maya, Aztecs, and all other native societies of Mexico remained without pack animals and without any edible domestic mammals except for dogs.
Conversely, domestic turkeys of Mexico and domestic sunflowers of the eastern United States might have thrived in the Andes, but their southward spread was stopped by the intervening tropical climates. The mere 700 miles of north-south distance prevented Mexican corn, squash, and beans from reaching the U.S. Southwest for several thousand years after their domestication in Mexico, and Mexican chili peppers and chenopods never did reach it in prehistoric times. For thousands of years after corn was domesticated in Mexico, it failed to spread northward into eastern North America, because of the cooler climates and shorter growing season prevailing there. At some time between A.D. 1 and A.D. 200, corn finally appeared in the eastern United States but only as a very minor crop. Not until around A.D. 900, after hardy varieties of corn adapted to northern climates had been developed, could corn-based agriculture contribute to the flowering of the most complex Native American society of North America, the Mississippian culture—a brief flowering ended by European-introduced germs arriving with and after Columbus.
Recall that most Fertile Crescent crops prove, upon genetic study, to derive from only a single domestication process, whose resulting crop spread so quickly that it preempted any other incipient domestications of the same or related species. In contrast, many apparently widespread Native American crops prove to consist of related species or even of genetically distinct varieties of the same species, independently domesticated in Mesoamerica, South America, and the eastern United States. Closely related species replace each other geographically among the amaranths, beans, chenopods, chili peppers, cottons, squashes, and tobaccos. Different varieties of the same species replace each other among the kidney beans, lima beans, the chili pepper Capsicum annuum / chinense, and the squash Cucurbita pepo. Those legacies of multiple independent domestications may provide further testimony to the slow diffusion of crops along the Americas’ north-south axis.
Africa and the Americas are thus the two largest landmasses with a predominantly north-south axis and resulting slow diffusion. In certain other parts of the world, slow north-south diffusion was important on a smaller scale. These other examples include the snail’s pace of crop exchange between Pakistan’s Indus Valley and South India, the slow spread of South Chinese food production into Peninsular Malaysia, and the failure of tropical Indonesian and New Guinean food production to arrive in prehistoric times in the modern farmlands of southwestern and southeastern Australia, respectively. Those two corners of Australia are now the continent’s breadbaskets, but they lie more than 2,000 miles south of the equator. Farming there had to await the arrival from faraway Europe, on European ships, of crops adapted to Europe’s cool climate and short growing season.
I HAVE BEEN dwelling on latitude, readily assessed by a glance at a map, because it is a major determinant of climate, growing conditions, and ease of spread of food production. However, latitude is of course not the only such determinant, and it is not always true that adjacent places at the same latitude have the same climate (though they do necessarily have the same day length). Topographic and ecological barriers, much more pronounced on some continents than on others, were locally important obstacles to diffusion.
For instance, crop diffusion between the U.S. Southeast and Southwest was very slow and selective although these two regions are at the same latitude. That’s because much of the intervening area of Texas and the southern Great Plains was dry and unsuitable for agriculture. A corresponding example within Eurasia involved the eastern limit of Fertile Crescent crops, which spread rapidly westward to the Atlantic Ocean and eastward to the Indus Valley without encountering a major barrier. However, farther eastward in India the shift from predominantly winter rainfall to predominantly summer rainfall contributed to a much more delayed extension of agriculture, involving different crops and farming techniques, into the Ganges plain of northeastern India. Still farther east, temperate areas of China were isolated from western Eurasian areas with similar climates by the combination of the Central Asian desert, Tibetan plateau, and Himalayas. The initial development of food production in China was therefore independent of that at the same latitude in the Fertile Crescent, and gave rise to entirely different crops. However, even those barriers between China and western Eurasia were at least partly overcome during the second millennium B.C., when West Asian wheat, barley, and horses reached China.
By the same token, the potency of a 2,000-mile north-south shift as a barrier also varies with local conditions. Fertile Crescent food production spread southward over that distance to Ethiopia, and Bantu food production spread quickly from Africa’s Great Lakes region south to Natal, because in both cases the intervening areas had similar rainfall regimes and were suitable for agriculture. In contrast, crop diffusion from Indonesia south to southwestern Australia was completely impossible, and diffusion over the much shorter distance from Mexico to the U.S. Southwest and Southeast was slow, because the intervening areas were deserts hostile to agriculture. The lack of a high-elevation plateau in Mesoamerica south of Guatemala, and Mesoamerica’s extreme narrowness south of Mexico and especially in Panama, were at least as important as the latitudinal gradient in throttling crop and livestock exchanges between the highlands of Mexico and the Andes.
Continental differences in axis orientation affected the diffusion not only of food production but also of other technologies and inventions. For example, around 3,000 B.C. the invention of the wheel in or near Southwest Asia spread rapidly west and east across much of Eurasia within a few centuries, whereas the wheels invented independently in prehistoric Mexico never spread south to the Andes. Similarly, the principle of alphabetic writing, developed in the western part of the Fertile Crescent by 1500 B.C., spread west to Carthage and east to the Indian subcontinent within about a thousand years, but the Mesoamerican writing systems that flourished in prehistoric times f
or at least 2,000 years never reached the Andes.
Naturally, wheels and writing aren’t directly linked to latitude and day length in the way crops are. Instead, the links are indirect, especially via food production systems and their consequences. The earliest wheels were parts of ox-drawn carts used to transport agricultural produce. Early writing was restricted to elites supported by food-producing peasants, and it served purposes of economically and socially complex food-producing societies (such as royal propaganda, goods inventories, and bureaucratic record keeping). In general, societies that engaged in intense exchanges of crops, livestock, and technologies related to food production were more likely to become involved in other exchanges as well.
America’s patriotic song “America the Beautiful” invokes our spacious skies, our amber waves of grain, from sea to shining sea. Actually, that song reverses geographic realities. As in Africa, in the Americas the spread of native crops and domestic animals was slowed by constricted skies and environmental barriers. No waves of native grain ever stretched from the Atlantic to the Pacific coast of North America, from Canada to Patagonia, or from Egypt to South Africa, while amber waves of wheat and barley came to stretch from the Atlantic to the Pacific across the spacious skies of Eurasia. That faster spread of Eurasian agriculture, compared with that of Native American and sub-Saharan African agriculture, played a role (as the next part of this book will show) in the more rapid diffusion of Eurasian writing, metallurgy, technology, and empires.
To bring up all those differences isn’t to claim that widely distributed crops are admirable, or that they testify to the superior ingenuity of early Eurasian farmers. They reflect, instead, the orientation of Eurasia’s axis compared with that of the Americas or Africa. Around those axes turned the fortunes of history.
PART THREE
FROM FOOD TO GUNS, GERMS, AND STEEL
CHAPTER 11
LETHAL GIFT OF LIVESTOCK
WE HAVE NOW TRACED HOW FOOD PRODUCTION AROSE in a few centers, and how it spread at unequal rates from there to other areas. Those geographic differences constitute important ultimate answers to Yali’s question about why different peoples ended up with disparate degrees of power and affluence. However, food production itself is not a proximate cause. In a one-on-one fight, a naked farmer would have no advantage over a naked hunter-gatherer.
Instead, one part of the explanation for farmer power lies in the much denser populations that food production could support: ten naked farmers certainly would have an advantage over one naked hunter-gatherer in a fight. The other part is that neither farmers nor hunter-gatherers are naked, at least not figuratively. Farmers tend to breathe out nastier germs, to own better weapons and armor, to own more-powerful technology in general, and to live under centralized governments with literate elites better able to wage wars of conquest. Hence the next four chapters will explore how the ultimate cause of food production led to the proximate causes of germs, literacy, technology, and centralized government.
The links connecting livestock and crops to germs were unforgettably illustrated for me by a hospital case about which I learned through a physician friend. When my friend was an inexperienced young doctor, he was called into a hospital room to deal with a married couple stressed-out by a mysterious illness. It did not help that the couple was also having difficulty communicating with each other, and with my friend. The husband was a small, timid man, sick with pneumonia caused by an unidentified microbe, and with only limited command of the English language. Acting as translator was his beautiful wife, worried about her husband’s condition and frightened by the unfamiliar hospital environment. My friend was also stressed-out from a long week of hospital work, and from trying to figure out what unusual risk factors might have brought on the strange illness. The stress caused my friend to forget everything he had been taught about patient confidentiality: he committed the awful blunder of requesting the woman to ask her husband whether he’d had any sexual experiences that could have caused the infection.
As the doctor watched, the husband turned red, pulled himself together so that he seemed even smaller, tried to disappear under his bedsheets, and stammered out words in a barely audible voice. His wife suddenly screamed in rage and drew herself up to tower over him. Before the doctor could stop her, she grabbed a heavy metal bottle, slammed it with full force onto her husband’s head, and stormed out of the room. It took a while for the doctor to revive her husband and even longer to elicit, through the man’s broken English, what he’d said that so enraged his wife. The answer slowly emerged: he had confessed to repeated intercourse with sheep on a recent visit to the family farm; perhaps that was how he had contracted the mysterious microbe.
This incident sounds bizarrely one-of-a-kind and of no possible broader significance. In fact, it illustrates an enormous subject of great importance: human diseases of animal origins. Very few of us love sheep in the carnal sense that this patient did. But most of us platonically love our pet animals, such as our dogs and cats. As a society, we certainly appear to have an inordinate fondness for sheep and other livestock, to judge from the vast numbers of them that we keep. For example, at the time of a recent census, Australia’s 17,085,400 people thought so highly of sheep that they kept 161,600,000 of them.
Some of us adults, and even more of our children, pick up infectious diseases from our pets. Usually they remain no more than a nuisance, but a few have evolved into something far more serious. The major killers of humanity throughout our recent history—smallpox, flu, tuberculosis, malaria, plague, measles, and cholera—are infectious diseases that evolved from diseases of animals, even though most of the microbes responsible for our own epidemic illnesses are paradoxically now almost confined to humans. Because diseases have been the biggest killers of people, they have also been decisive shapers of history. Until World War II, more victims of war died of war-borne microbes than of battle wounds. All those military histories glorifying great generals oversimplify the ego-deflating truth: the winners of past wars were not always the armies with the best generals and weapons, but were often merely those bearing the nastiest germs to transmit to their enemies.
The grimmest examples of germs’ role in history come from the European conquest of the Americas that began with Columbus’s voyage of 1492. Numerous as were the Native American victims of the murderous Spanish conquistadores, they were far outnumbered by the victims of murderous Spanish microbes. Why was the exchange of nasty germs between the Americas and Europe so unequal? Why didn’t Native American diseases instead decimate the Spanish invaders, spread back to Europe, and wipe out 95 percent of Europe’s population? Similar questions arise for the decimation of many other native peoples by Eurasian germs, as well as for the decimation of would-be European conquistadores in the tropics of Africa and Asia.
Thus, questions of the animal origins of human disease lie behind the broadest pattern of human history, and behind some of the most important issues in human health today. (Think of AIDS, an explosively spreading human disease that appears to have evolved from a virus resident in wild African monkeys.) This chapter will begin by considering what a “disease” is, and why some microbes have evolved so as to “make us sick,” whereas most other species of living things don’t make us sick. We’ll examine why many of our most familiar infectious diseases run in epidemics, such as our current AIDS epidemic and the Black Death (bubonic plague) epidemics of the Middle Ages. We’ll then consider how the ancestors of microbes now confined to us transferred themselves from their original animal hosts. Finally, we’ll see how insight into the animal origins of our infectious diseases helps explain the momentous, almost one-way exchange of germs between Europeans and Native Americans.
NATURALLY, WE’RE DISPOSED to think about diseases just from our own point of view: what can we do to save ourselves and to kill the microbes? Let’s stamp out the scoundrels, and never mind what their motives are! In life in general, though, one has to understand the enemy in order to beat him, an
d that’s especially true in medicine.
Hence let’s begin by temporarily setting aside our human bias and considering disease from the microbes’ point of view. After all, microbes are as much a product of natural selection as we are. What evolutionary benefit does a microbe derive from making us sick in bizarre ways, like giving us genital sores or diarrhea? And why should microbes evolve so as to kill us? That seems especially puzzling and self-defeating, since a microbe that kills its host kills itself.
Basically, microbes evolve like other species. Evolution selects for those individuals most effective at producing babies and at helping them spread to suitable places to live. For a microbe, spread may be defined mathematically as the number of new victims infected per each original patient. That number depends on how long each victim remains capable of infecting new victims, and how efficiently the microbe is transferred from one victim to the next.
Microbes have evolved diverse ways of spreading from one person to another, and from animals to people. The germ that spreads better leaves more babies and ends up favored by natural selection. Many of our “symptoms” of disease actually represent ways in which some damned clever microbe modifies our bodies or our behavior such that we become enlisted to spread microbes.
The most effortless way a germ could spread is by just waiting to be transmitted passively to the next victim. That’s the strategy practiced by microbes that wait for one host to be eaten by the next host: for instance, salmonella bacteria, which we contract by eating already infected eggs or meat; the worm responsible for trichinosis, which gets from pigs to us by waiting for us to kill the pig and eat it without proper cooking; and the worm causing anisakiasis, with which sushi-loving Japanese and Americans occasionally infect themselves by consuming raw fish. Those parasites pass to a person from an eaten animal, but the virus causing laughing sickness (kuru) in the New Guinea highlands used to pass to a person from another person who was eaten. It was transmitted by cannibalism, when highland babies made the fatal mistake of licking their fingers after playing with raw brains that their mothers had just cut out of dead kuru victims awaiting cooking.