The Hedgehog, the Fox, and the Magister's Pox
(I may be imposing modern sensibilities upon Woodward’s different intentions and motives, but these quick “admissions,” presented as a set of minimal statements in partial sentences, do seem to project Woodward’s discomfort at his perceived need to invoke a miraculous moment of antigravity as the only means he could devise for explaining a set of primary empirical observations.)
Woodward’s second statement, from the introduction to his book, comes very close to outright apology for calling upon miracles against the preferences of science for natural explanation:A few advances there are in the following pages, tending to assert the superintendence and agency of Providence in the natural world. . . . But I may very safely say, that . . . I have not entered farther into it than merely I was led by the necessity of my subject: nor could I have done less than I have, without the most apparent injury and injustice to truth.
The genuine tension between developing scientific and traditional scriptural explanations of world-making bursts forth in the strongly polemical writings of John Keill (1671–1721), Savilian professor of astronomy at Oxford, and the most theologically conservative scholar in Newton’s immediate circle. In his article for the Dictionary of Scientific Biography, David Kubrin described Keill as “one of the few around Newton with High Church patronage.” Keill’s brief for miracles differed radically from the careful and minimal claims of Newton or Woodward. Keill reviled the Cartesians as prophets of atheism (albeit unintentionally, he grudgingly admitted) in their claims that God restricted himself to natural laws established at the creation—for a deity so hampered in direct expression of his singular powers might just as well not exist at all. In contrast with Woodward’s caution, Keill defended a muscular preference for frequent miracles as the preferred and proper way of God, the primary agent of major episodes in nature’s history, and also the most potent weapon against the dangerous atheistic tendencies of his age. In Keill’s view, Kubrin continues, “natural theology should be subordinated to the Scripture, while natural philosophy should acknowledge the important role played not only by Providence but also by outright miracles.”
In his major geological treatise of 1698, for example, Keill presents an explicit defense of miracles as the primary shapers of major events in the earth’s history, thereby placing this central aspect of the natural world permanently outside the province and possibility of scientific understanding:The scriptures give us an account of several miracles wrought by the hand of Omnipotence upon several occasions, which did not so necessarily require them. Why ought we then to deny this universal destruction of the earth [the deluge of Noah] to be miraculous? Miracles are the great and wonderful works of God, by which he showeth his Dominion and Power, and that his Kingdom reacheth over all, even Nature herself, and that he does not confine himself to the ordinary methods of acting, but can alter them according to his pleasure. Were not they [miracles] given us to convince us of the sacred truths contained in holy scripture? . . . Certainly we are not to detract from the value of [miracles] by pretending to deduce them from natural and mechanical causes, when they are by no ways explicable by them. It is therefore both the easiest and safest way to refer the wonderful destruction of the old world to the Omnipotent hand of God, who can do whatsoever he pleases.
If the efficacy of scientific explanation could be denied to such a central subject in natural history by a colleague serving as professor of astronomy at his nation’s greatest (if rather hidebound) university, then what greater imprecations might flow from professional humanists and theologians with genuine and pervasive animus against a fledgling enterprise, science itself, that (to mix both metaphors and taxonomic categories) might yet be nipped in the bud of its initial promise? To cite just one prominent example of why a budding scientist might reasonably entertain such a fear, consider some words of warning from Edward Stillingfleet, a famous scholar and conservative theologian who, in 1662, published his defense of scriptural primacy in a popular work with a forthright title: Origines Sacrae, or a Rational Account of the Grounds of Christian Faith, as to the Truth and Divine Authority of the Scriptures, and the Matters Therein Contained. (I quote from my copy of the 1666 edition, printed by Henry Mortlock “at the sign of the Phoenix in St. Paul’s Church-yard near the little north door,” just a few months before the great fire of London burned that region of town to rubble in a truly nonmiraculous catastrophe.)
Stillingfleet vented his harshest criticism against the standard theological construct of Newtonian scientists: the “clockwinder” God who got everything right at the creation and had never again imposed his direct hand upon the works of nature. Such an abstract and distant deity, Stillingfleet insists, cannot serve as a satisfying source for our veneration, our moral rectitude, or our hope of eternal reward. The rise of the mechanical philosophy, and the Scientific Revolution in general, therefore truly threatens our psychological safety and public order:What expressions of gratitude can be left to God for his goodness, if he interpose not in the affairs of the world? . . . For if the world did of necessity exist, then God is no free agent; and if so, then all instituted Religion is to no purpose; nor can there be any expectation of reward, or fear of punishment from him who hath nothing else to do in the world but to set the great wheel of the heavens going.
In short, the leaders of the Scientific Revolution did encounter genuine intellectual opponents of no mean force, powerful critics who held all the advantages of incumbency and the weight of tradition. One can scarcely blame science for a little pugnacity in its infancy.
3
So Noble an Hecatombe: The Weight of Humanism
THE PECULIAR NOTION THAT SCIENCE UTILIZES PURE AND UNBIASED observation as the only and ultimate method for discovering nature’s truth, operates as the foundational (and, I would argue, rather pernicious) myth of my profession. Scientists could not so approach the world even if we justly so desired—for, as the distinguished philosopher of science N. R. Hanson once remarked, “the cloven hoofprint of theory” necessarily intrudes upon any scheme of observation. So must it be, and so should it be—for how could we ever discern a pattern, or see anything coherent, amid an infinitude of potential perceptions, unless we employed some theoretical expectation to guide our penetration of this plethora. Bias cannot be equated with the existence of a preference; rather, bias should be defined as our unwillingness to abandon these preferences (or at least to challenge them further and rigorously) when nature seems to say “no” to our explicit searches and tests. Indeed, most scientists distinguish their work by imposing a conscious and opposite bias upon their practice—that is, by applying greater skepticism and more rigorous (and frequent) testing to observations that support their preferences—precisely because they know how enticing, and thus how impervious to refutation, such preferences can become.
Thoughtful scientists have always recognized both the philosophical necessity and the practical advantages of observations made to test theoretical preferences, rather than promiscuously recorded as random items of a mindless list. In one of my favorite “great quotations,” Charles Darwin wrote to a close colleague about the myth of “objective” recording: “How odd it is that anyone should not see that all observation must be for or against some view if it is to be of any service.”3 In this context, if we wish to grasp the major intentions of the leaders of the Scientific Revolution, we ought to inquire about their opposition, at least as they perceived and depicted the field of battle. What folks, and what ideas, did they brand as their primary impediments—for all observation must be “for or against” some view. As stated above, I wish to bypass the canonical heros from Galileo to Newton and focus instead upon the leading taxonomists and naturalists of Newton’s generation—both because my expertise lies in this area and because we have more to learn from the neglected than from the overly eulogized.
I shall begin with a quotation that makes perfect sense in a late-seventeenth-century context, but would strike any modern scientist as decidedly peculiar. I encountered this
statement in a famous work by Britain’s finest naturalist of Newton’s time. John Ray (1627–1705)—the great taxonomist of plants, birds, fishes, and fossils, the man who even published a compendium of proverbs to show that human aphorisms could be classified by the same principles used to arrange organisms—wondered in his Synopsis Methodica Animalium Quadrupedium et Serpenti Generis (A Methodological Synopsis of the Kinds of Four-Footed Animals, and of Serpents), published in 1693, whether his generation could still discover anything new or interesting about animals: Quid attinet de Animalibus plura scribere? Imo post Aldrovandum et Gesnerum quid scribendum restat? (“What more can be undertaken in writing about animals? What, indeed, remains to be written after [the work of] Aldrovandi and Gesner?”)
This statement sounds so peculiar to modern sensibilities because such a dilemma would never occur to a scientist in the twenty-first century. How could anyone even imagine that everything worth doing had already been done, or worth knowing already known? Science, after all, can almost be defined by its skepticism and constant probing, by the conviction, always fulfilled so far, that new pathways to the fundamentally unknown still lie before us, however invisible to our current perception and instrumentation.
To grasp Ray’s statement, we need to recognize that the leading intellectual movement of the previous century (with Aldrovandi and Gesner as chief exponents in natural history), and the focus of Ray’s opposition in 1693, would have depicted the fate of any future zoological study in precisely these terms. Ray therefore tried to engage his opposition, to secure their understanding (and perhaps even their eventual agreement), by posing his alternative in their language.
We often get befuddled when we try to comprehend the central belief of the system that the Scientific Revolution hoped to replace, because this precept strikes us as so strange and archaic, whereas the movement itself still commands our maximal respect for the fame and valor of its heroes and the honor attached to its name. We continue to revere the Renaissance—literally meaning “the rebirth”—because we so admire the works of Leonardo and Michelangelo, and because we so respectfully refer to rare folks of multiple academic talents as “Renaissance” men and women. Thus the very mention of the Renaissance tends to evoke an image of forward-looking modernity in our minds.
But our modern concept of science could never have flourished, or even been conceived at all, under the aims and sensibilities of the Renaissance. This movement did wish to augment the storehouse of human knowledge—but not by discovering new truths of nature through observation and experiment. As the name implies, Renaissance scholars sought a rebirth, not an accumulation or a revolution. They believed that everything worth knowing had been ascertained by the great intellects of the classical world (the glory of Greece, the grandeur of Rome, and all that), but then either not transcribed or, more likely, lost to the West during a thousand intervening dark years, as libraries burned and decayed, and new dogmas clouded the ancient spirit of liberal learning. Thus, for the Renaissance, the recovery of ancient wisdom, not the discovery of novel data, became the primary task of scholarship. Returning, then, to Ray’s challenge: the belief that rigorous observation of nature might offer only limited utility, or even prove counterproductive—because great scholars (inspired by ancient sources) had already been there and done that—seemed entirely reasonable to champions of the Renaissance, especially given their lukewarm feelings about this tough new kid on the block, who paid superficial homage but who (one suspected) really wished to assume the reins himself, and to discredit Greece and Rome.
As the culmination of their art and the intention of their movement, Ulisse Aldrovandi (1522–1605) of Bologna and Konrad Gesner (1516–1565) of Zurich, the premier natural historians of the Renaissance, published massive and lavishly illustrated compendia on the inhabitants of all three realms of nature—animal, vegetable, and mineral. But the form and purpose of these amazing volumes would strike any modern scientist as surpassingly strange, albeit wonderfully weird. Aldrovandi and Gesner displayed no rooted antipathy to novel information of their own discovery, or to observing animals with their own eyes and recording the results, but such activities represented a diversion from their primary purpose: to transmit everything ever known, stated, or merely believed about the objects under their scrutiny. For example, Gesner’s seminal work, the Historia animalium (volume 1, on mammals) of 1551, includes an alphabetical series of chapters from De alce (on the elk) to De vulpe (on the fox), with each entry structured as a compendium of everything ever recorded about the species at hand, with pride of place, and maximal length of treatment, granted to the claims of classical authors, particularly Aristotle for Greek learning, and Pliny (who died in his boots, and with unbeatable panache, in the eruption of Mount Vesuvius in A.D. 79) for the Roman follow-up.
Aldrovandi and Gesner also showed no aversion to true information versus the claims of legends and fables—and they did try to make the distinction in their texts. But facts gained no preferred status by their documentable veracity. After all, these Renaissance scholars viewed completeness of previous human claims and beliefs, not the separation of fact from fiction, as their ultimate goal—for, by their lights, the Ancients had developed the correct framework for everything worth knowing, and our modern efforts must therefore be directed to recovering this knowledge and coordinating Ancient convictions with later claims and beliefs, all the better to compile a full account of human experience with each of God’s creatures. (Thus Ray’s rhetorical question could not have been more apropos for his time: had Aldrovandi and Gesner left anything unsaid? Or, using this book’s metaphor, had the fox’s full range already been specified?)
To understand Gesner’s Renaissance motives and intentions, one must read his chapters De monocerote and De satyro (“on the unicorn,” and “on the satyr”), both included among genuine mammals not because Gesner credited their actual existence, but because he conceived his work as a full compendium of human attitudes and beliefs about four-footed beasts—and the anatomical attributes, or even the reality of their being, did not figure prominently among his criteria for inclusion. For example, Gesner’s thirty-six-page article De sue (on pigs), followed by a further fifteen pages De apro (on boars), begins with a lengthy discussion of classical knowledge (adorned with copious quotations in Latin and Greek), followed by sections on etymology, gastronomy, pigs as emblems and metaphors in literature, and a list of all recorded proverbs about pigs. Those who would laugh at Gesner, or smile benignly upon his misguided intentions, because he included such chozzerei in a supposedly scientific treatise, should revise the assumption behind their smug dismissal. Gesner purposefully assembled all this pig paraphernalia—the more the better, and the greater the admiration that would therefore flow to his thoroughness as a scholar.
If we look to volume H of the first edition of the Oxford English Dictionary, published in 1901, well before later academic debates of the twentieth century would alter the meanings into code words for partisans of struggle, we find the classical definition of humanism that struck the developing Scientific Revolution as so problematical: “Devotion to those studies which promote human culture; literary culture; esp. The system of the Humanists, the study of the Roman and Greek classics which came into vogue at the Renaissance.” The humanities, as scholarly subjects, then become “learning or literature concerned with human culture: a term including the various branches of polite scholarship, as grammar, rhetoric, poetry, and esp. the study of the ancient Latin and Greek classics.” Finally, the OED defines a humanist as “one devoted to or versed in the literary studies called ‘the humanities’; a classical scholar; esp. a Latinist, a professor or teacher of Latin.”
Now, nothing in these dry definitions would have offended the nascent scientists of Newton’s world—so long as these devotees of Latin, and true believers in the full sufficiency of ancient knowledge, stuck to their literary lasts and did not insist upon applying the same principles, and the same moral ordering of worth among sch
olarly pursuits, to the study of life and the earth. But, as the leading examples of Gesner and Aldrovandi show so well, the Renaissance humanists did assume that their style of learning applied with equal force and exclusivity throughout the domain of subjects that we now allot to scientific explanation—thus sowing seeds of conflict when the new observational methodologies, with their touch of philistinism toward antique sources of information, challenged the old compendia, long regarded as complete and unsurpassable by their Renaissance champions.
This older explanatory world of Renaissance recovery had to clash with the scientific sensibilities inspired by Bacon and Descartes. For the two schools could hardly have differed more in their definitions of both goals and methods. (1) For goal, the Renaissance desire to refine knowledge by recovering the old versus the scientists’ intention to extend knowledge by observing the heretofore unseen, whether by finding unknown objects in previously unexplored lands, or by inventing instruments that could focus and measure the previously unseeable (with the microscope and telescope as primary examples). (2) For method, both Renaissance scholars and budding scientists favored the development of great collections, housed in museums. But the two schools conceived museums as fundamentally different kinds of places, imbued with different purposes—the Renaissance as a complete repository of objects, both natural and manufactured, and dedicated to the compendiast’s dream of recording all forms of interaction between human and natural productions. The early scientific museums, on the other hand, rejected such promiscuous ingathering and sought instead to include certain kinds of objects (and to reject others), arranged in an order that would shed light upon the causes and purposes of their natural origins and utilities (in other words, more of a hedgehog’s restriction to the display of nature’s objective, sensible, coherent, and factual order, independent of human preferences and interactions).