Broca's Brain
In summary, Velikovsky’s idea that the clouds of Venus are composed of hydrocarbons or carbohydrates is neither original nor correct. The “crucial test” fails.
PROBLEM VIII
THE TEMPERATURE OF VENUS
ANOTHER CURIOUS circumstance concerns the surface temperature of Venus. While the high temperature of Venus is often quoted as a successful prediction and a support of Velikovsky’s hypothesis, the reasoning behind his conclusion and the consequences of his arguments do not seem to be widely known nor discussed.
Let us begin by considering Velikovsky’s views on the temperature of Mars (pages 367–368). He believes that Mars, being a relatively small planet, was more severely affected in its encounters with the more massive Venus and Earth, and therefore that Mars should have a high temperature. He proposes that the mechanism may be “a conversion of motion into heat,” which is a little vague, since heat is precisely the motion of molecules or, much more fantastic, by “interplanetary electrical discharges” which “could also initiate atomic fissions with ensuing radioactivity and emission of heat.”
In the same section, he baldly states, “Mars emits more heat than it receives from the Sun,” in apparent consistency with his collision hypothesis. This statement is, however, dead wrong. The temperature of Mars has been measured repeatedly by Soviet and American spacecraft and by ground-based observers, and the temperatures of all parts of Mars are just what is calculated from the amount of sunlight absorbed by the surface. What is more, this was well known in the 1940s, before Velikovsky’s book was published. And while he mentions four prominent scientists who were involved before 1950 in measuring the temperature of Mars, he makes no reference to their work, and explicitly and erroneously states that they concluded that Mars gave off more radiation than it received from the Sun.
It is difficult to understand this set of errors, and the most generous hypothesis I can offer is that Velikovsky confused the visible part of the electromagnetic spectrum, in which sunlight heats Mars, with the infrared part of the spectrum, in which Mars largely radiates to space. But the conclusion is clear. Mars, even more than Venus, by Velikovsky’s argument should be a “hot planet.” Had Mars proved to be unexpectedly hot, perhaps we would have heard of this as a further confirmation of Velikovsky’s views. But when Mars turns out to have exactly the temperature everyone expected it to have, we do not hear of this as a refutation of Velikovsky’s views. There is a planetary double standard at work.
When we now move on to Venus, we find rather similar arguments brought into play. I find it odd that Velikovsky does not attribute the temperature of Venus to its ejection from Jupiter (see Problem I, above), but he does not. Instead, we are told, because of its close encounter with the Earth and Mars, Venus must have been heated, but also (page 77) “the head of the comet … had passed close to the Sun and was in a state of candescence.” Then, when the comet became the planet Venus, it must still have been “very hot” and have “given off heat” (page ix). Again pre-1950 astronomical observations are referred to (page 370), which show that the dark side of Venus is approximately as hot as the bright side of Venus, to the level probed by middle-infrared radiation. Here Velikovsky accurately quotes the astronomical investigators, and from their work deduces (page 371) “the night side of Venus radiates heat because Venus is hot.” Of course!
What I think Velikovsky is trying to say here is that his Venus, like his Mars, is giving off more heat than it receives from the Sun, and that the observed temperatures on both the night and day sides are due more to the “candescence” of Venus than to the radiation it now receives from the Sun. But this is a serious error. The bolometric albedo (the fraction of sunlight reflected by an object at all wavelengths) of Venus is about 0.73, entirely consistent with the observed infrared temperature of the clouds of Venus of about 240°K; that is to say, the clouds of Venus are precisely at the temperature expected on the basis of the amount of sunlight that is absorbed there.
Velikovsky proposed that both Venus and Mars give off more heat than they receive from the Sun. He is wrong for both planets. In 1949 Kuiper (see References) suggested that Jupiter gives off more heat than it receives, and subsequent observations have proved him right. But of Kuiper’s suggestion Worlds in Collision breathes not a word.
Velikovsky proposed that Venus is hot because of its encounters with Mars and the Earth, and its close passage to the Sun. Since Mars is not anomalously hot, the high surface temperature of Venus must be attributed primarily to the passage of Venus near the Sun during its cometary incarnation. But it is easy to calculate how much energy Venus would have received during its close passage to the Sun and how long it would take for this energy to be radiated away into space. This calculation is performed in Appendix 3, where we find that all of this energy is lost in a period of months to years after the close passage to the Sun, and that there is no chance of any of that heat being retained at the present time in Velikovsky’s chronology. Velikovsky does not mention how close to the Sun Venus is supposed to have passed, but a very close passage compounds the already extremely grave collision physics difficulties outlined in Appendix 1. Incidentally, there is a slight hint in Worlds in Collision that Velikovsky believes that comets shine by emitted rather than reflected light. If so, this may be the source of some of his confusion regarding Venus.
Velikovsky nowhere states the temperature he believed Venus to be at in 1950. As mentioned above, on page 77 he says vaguely that the comet that later became Venus was in a state of “candescence,” but in the preface to the 1965 edition (page xi), he claims to have predicted “an incandescent state of Venus.” This is not at all the same thing, because of the rapid cooling after its supposed solar encounter (Appendix 3). Moreover, Velikovsky himself is proposing that Venus is cooling through time, so what precisely Velikovsky meant by saying that Venus is “hot” is to some degree obscure.
Velikovsky writes in the 1965 preface that his claim of a high surface temperature was “in total disagreement with what was known in 1946.” This turns out to be not quite the case. The dominant figure of Rupert Wildt again looms over the astronomical side of Velikovsky’s hypothesis. Wildt, who, unlike Velikovsky, understood the nature of the problem, predicted correctly that Venus and not Mars would be “hot.” In a 1940 paper in the Astrophysical Journal, Wildt argued that the surface of Venus was much hotter than conventional astronomical opinion had held, because of a carbon-dioxide greenhouse effect. Carbon dioxide had recently been discovered spectroscopically in the atmosphere of Venus, and Wildt correctly pointed out that the observed large quantity of CO2 would trap infrared radiation given off by the surface of the planet until the surface temperature rose to a higher value, so that the incoming visible sunlight just balanced the outgoing infrared planetary emission. Wildt calculated that the temperature would be almost 400°K, or around the normal boiling point of water (373°K = 212 °F = 100°C). There is no doubt that this was the most careful treatment of the surface temperature of Venus prior to the 1950s, and it is again odd that Velikovsky, who seems to have read all papers on Venus and Mars published in the Astrophysical Journal in the 1920s, 1930s and 1940s, somehow overlooked this historically significant work.
We now know from ground-based radio observations and from the remarkably successful direct entry and landing probes of the Soviet Union that the surface temperature of Venus is within a few degrees of 750°K (Marov, 1972). The surface atmospheric pressure is about ninety times that at the surface of the Earth, and is comprised primarily of carbon dioxide. This large abundance of carbon dioxide, plus the smaller quantities of water vapor which have been detected on Venus, are adequate to heat the surface to the observed temperature via the greenhouse effect. The Venera 8 descent module, the first spacecraft to land on the illuminated hemisphere of Venus, found it illuminated at the surface, and the Soviet experimenters concluded that the amount of sunlight reaching the surface and the atmospheric constitution were together adequate to drive the require
d radiative-convective greenhouse (Marov, et al., 1973). These results were confirmed by the Venera 9 and 10 missions, which obtained clear photographs, in sunlight, of surface rocks. Velikovsky is thus certainly mistaken when he says (page ix) “light does not penetrate the cloud cover,” and is probably mistaken when he says (page ix) the “greenhouse effect could not explain so high a temperature.” These conclusions received important additional support late in 1978 from the U.S. Pioneer Venus mission.
A repeated claim by Velikovsky is that Venus is cooling off with time. As we have seen, he attributes its high temperature to solar heating during a close solar passage. In many publications Velikovsky compares published temperature measurements of Venus, made at different times, and tries to show the desired cooling. An unbiased presentation of the microwave brightness temperatures of Venus—the only nonspacecraft data that apply to the surface temperature of the planet—are exhibited in Figure 1. The error bars represent the uncertainties in the measurement processes as estimated by the radio observers themselves. We see that there is not the faintest hint of a decline in temperature with time (if anything, there is a suggestion of an increase with time, but the error bars are sufficiently large that such a conclusion is also unsupported by the data). Similar results apply to measurements, in the infrared part of the spectrum, of cloud temperatures: they are lower in magnitude and do not decline with time. Moreover, the simplest considerations of the solution of the one-dimensional equation of heat conduction show that in the Velikovskian scenario essentially all the cooling by radiation to space would have occurred long ago. Even if Velikovsky were right about the source of the high Venus surface temperatures, his prediction of a secular temperature decrease would be erroneous.
FIGURE 1. Microwave brightness temperatures of Venus as a function of time (after a compilation by D. Morrison). There is certainly no evidence of a declining surface temperature. The wavelength of observation is denoted by Λ.
The high surface temperature of Venus is another of the so-called proofs of the Velikovsky hypothesis. We find that (1) the temperature in question was never specified; (2) the mechanism proposed for providing this temperature is grossly inadequate; (3) the surface of the planet does not cool off with time as advertised; and (4) the idea of a high surface temperature on Venus was published in the dominant astronomical journal of its time and with an essentially correct argument ten years before the publication of Worlds in Collision.
PROBLEM IX
THE CRATERS AND MOUNTAINS
OF VENUS
IN 1973 AN IMPORTANT aspect of the surface of Venus, verified by many later observations, was discovered by Dr. Richard Goldstein and associates, using the Goldstone radar observatory of the Jet Propulsion Laboratory. They found, from radar that penetrates Venus’ clouds and is reflected off its surface, that the planet is mountainous in places and cratered abundantly; perhaps, like parts of the Moon, saturation-cratered—i.e., so packed with craters that one crater overlaps the other. Because successive volcanic eruptions tend to use the same lava tube, saturation cratering is more characteristic of impact than of volcanic cratering mechanisms. This is not a conclusion predicted by Velikovsky, but that is not my point. These craters, like the craters in the lunar maria (plural for Latin mare, “sea”), on Mercury and in the cratered regions of Mars, are produced almost exclusively by the impact of interplanetary debris. Large crater-forming objects are not dissipated as they enter the Venus atmosphere, despite its high density. Now, the colliding objects cannot have arrived at Venus in the past ten thousand years; otherwise, the Earth would be as plentifully cratered. The most likely source of these collisions is the Apollo objects (asteroids whose orbits cross the orbit of the Earth) and small comets we have already discussed (Appendix 1). But for them to produce as many craters as Venus possesses, the cratering process on Venus must have taken billions of years. Alternatively, the cratering may have occurred more rapidly in the very earliest history of the solar system, when interplanetary debris was much more plentiful. But there is no way for it to have happened recently. On the other hand, if Venus was, several thousand years ago, in the deep interior of Jupiter, there is no way it could have accumulated such impacts there. The clear conclusion from the craters of Venus is, therefore, that Venus has for billions of years been an object exposed to interplanetary collisions—in direct contradiction to the fundamental premise of Velikovsky’s hypothesis.
The Venus craters are significantly eroded. Some of the rocks on the surface of the planet, as revealed by the Venera 9 and 10 photography, are quite young; others are severely eroded. I have described elsewhere possible mechanisms for erosion on the Venus surface—including chemical weathering and slow deformation at high temperatures (Sagan, 1976). However, these findings have no bearing whatever on the Velikovskian hypotheses: recent volcanic activity on Venus need no more be attributed to a close passage to the Sun or to Venus’ being in some vague sense a “young” planet than recent volcanic activity on Earth.
In 1967 Velikovsky wrote: “Obviously, if the planet is billions of years old, it could not have preserved its original heat; also, any radioactive process that can produce such heat must be of a very rapid decay [sic], and this again would not square with an age of the planet counted in billions of years.” Unfortunately, Velikovsky has failed to understand two classic and basic geophysical results. Thermal conduction is a much slower process than radiation or convection, and, in the case of the Earth, primordial heat makes a detectable contribution to the geothermal temperature gradient and to the heat flux from the Earth’s interior. The same applies to Venus. Also, the radionuclides responsible for radioactive heating of the Earth’s crust are long-lived isotopes of uranium, thorium and potassium—isotopes with half-lives comparable to the age of the planet. Again, the same applies to Venus.
If, as Velikovsky believes, Venus were completely molten only a few thousand years ago—from planetary collisions or any other cause—no more than a thin outer crust, at most ~ 100 meters thick, could since have been produced by conductive cooling. But the radar observations reveal enormous linear mountain ranges, ringed basins, and a great rift valley, with dimensions of hundreds to thousands of kilometers. It is very unlikely that such extensive tectonic or impact features could be stably supported over a liquid interior by such a thin and fragile crust.
PROBLEM X
THE CIRCULARIZATION OF THE
ORBIT OF VENUS AND
NONGRAVITATIONAL FORCES
IN THE SOLAR SYSTEM
THE IDEA that Venus could have been converted, in a few thousand years, from an object in a highly elongated or eccentric orbit to its present orbit, which is—except for Neptune—the most nearly perfect circular orbit of all the planets, is at odds with what we know about the three-body problem* in celestial mechanics. However, it must be admitted that this is not a completely solved problem, and that, while the odds are large, they are not absolutely overwhelming against Velikovsky’s hypothesis on this score. Furthermore, when Velikovsky invokes electrical or magnetic forces, with no effort to calculate their magnitude or describe in detail their effects, we are hard pressed to assess his ideas. However, simple arguments from the required magnetic energy density to circularize a comet show that the field strengths implied are unreasonably high (Appendix 4)—they are counterindicated by studies of rock magnetization.
We can also approach the problem empirically. Straightforward Newtonian mechanics is able to predict with remarkable accuracy the trajectories of spacecraft—so that, for example, the Viking orbiters were placed within 100 kilometers of their designated orbit; Venera 8 was placed precisely on the sunlit side of the equatorial terminator of Venus; and Voyager 1 was placed in exactly the correct entry corridor in the vicinity of Jupiter to be directed close to Saturn. No mysterious electrical or magnetic influences were encountered. Newtonian mechanics is adequate to predict, with great precision, for example, the exact moment when the Galilean satellites of Jupiter will eclipse each other
.
Comets, it is true, have somewhat less predictable orbits, but this is almost certainly because there is a boiling off of frozen ices as these objects approach the Sun, and a small rocket effect. The cometary incarnation of Venus, if it existed, might also have had such icy vaporization, but there is no way in which the rocket effect would have preferentially brought that comet into close passages with the Earth or Mars. Halley’s comet, which has probably been observed for two thousand years, remains on a highly eccentric orbit and has not been observed to show the slightest tendency toward circularization; yet it is almost as old as Velikovsky’s “comet.” It is extraordinarily unlikely that Velikovsky’s comet, had it ever existed, became the planet Venus.
SOME OTHER PROBLEMS
THE PRECEDING ten points are the major scientific flaws in Velikovsky’s argument, as nearly as I can determine. I have discussed earlier some of the difficulties with his approach to ancient writings. Let me here list a few of the miscellaneous other problems I have encountered in reading Worlds in Collision.
On page 280 the Martian moons Phobos and Deimos are imagined to have “snatched some of Mars’ atmosphere” and to thereby appear very bright. But it is immediately clear that the escape velocity on these objects—perhaps 20 miles per hour—is so small as to make them incapable of retaining even temporarily any atmosphere; close-up Viking photographs show no atmosphere and no frost patches; and they are among the darkest objects in the solar system.