Page 27 of The Selfish Gene


  In the case of genes, we saw in Chapter 3 that co-adapted gene complexes may arise in the gene pool. A large set of genes concerned with mimicry in butterflies became tightly linked together on the same chromosome, so tightly that they can be treated as one gene. In Chapter 5 we met the more sophisticated idea of the evolutionarily stable set of genes. Mutually suitable teeth, claws, guts, and sense organs evolved in carnivore gene pools, while a different stable set of characteristics emerged from herbivore gene pools. Does anything analogous occur in meme pools? Has the god meme, say, become associated with any other particular memes, and does this association assist the survival of each of the participating memes? Perhaps we could regard an organized church, with its architecture, rituals, laws, music, art, and written tradition, as a co-adapted stable set of mutually-assisting memes.

  To take a particular example, an aspect of doctrine that has been very effective in enforcing religious observance is the threat of hell fire. Many children and even some adults believe that they will suffer ghastly torments after death if they do not obey the priestly rules. This is a peculiarly nasty technique of persuasion, causing great psychological anguish throughout the middle ages and even today. But it is highly effective. It might almost have been planned deliberately by a machiavellian priesthood trained in deep psychological indoctrination techniques. However, I doubt if the priests were that clever. Much more probably, unconscious memes have ensured their own survival by virtue of those same qualities of pseudo-ruthlessness that successful genes display. The idea of hell fire is, quite simply, self perpetuating, because of its own deep psychological impact. It has become linked with the god meme because the two reinforce each other, and assist each other's survival in the meme pool.

  Another member of the religious meme complex is called faith. It means blind trust, in the absence of evidence, even in the teeth of evidence. The story of Doubting Thomas is told, not so that we shall admire Thomas, but so that we can admire the other apostles in comparison. Thomas demanded evidence. Nothing is more lethal for certain kinds of meme than a tendency to look for evidence. The other apostles, whose faith was so strong that they did not need evidence, are held up to us as worthy of imitation. The meme for blind faith secures its own perpetuation by the simple unconscious expedient of discouraging rational inquiry.

  Blind faith can justify anything. If a man believes in a different god, or even if he uses a different ritual for worshipping the same god, blind faith can decree that he should die-on the cross, at the stake, skewered on a Crusader's sword, shot in a Beirut street, or blown up in a bar in Belfast. Memes for blind faith have their own ruthless ways of propagating themselves. This is true of patriotic and political as well as religious blind faith.

  Memes and genes may often reinforce each other, but they sometimes come into opposition. For example, the habit of celibacy is presumably not inherited genetically. A gene for celibacy is doomed to failure in the gene pool, except under very special circumstances such as we find in the social insects. But still, a meme for celibacy can be successful in the meme pool. For example, suppose the success of a meme depends critically on how much time people spend in actively transmitting it to other people. Any time spent in doing other things than attempting to transmit the meme may be regarded as time wasted from the meme's point of view. The meme for celibacy is transmitted by priests to young boys who have not yet decided what they want to do with their lives. The medium of transmission is human influence of various kinds, the spoken and written word, personal example and so on. Suppose, for the sake of argument, it happened to be the case that marriage weakened the power of a priest to influence his flock, say because it occupied a large proportion of his time and attention. This has, indeed, been advanced as an official reason for the enforcement of celibacy among priests. If this were the case, it would follow that the meme for celibacy could have greater survival value than the meme for marriage. Of course, exactly the opposite would be true for a gene for celibacy. If a priest is a survival machine for memes, celibacy is a useful attribute to build into him. Celibacy is just a minor partner in a large complex of mutually-assisting religious memes.

  I conjecture that co-adapted meme-complexes evolve in the same kind of way as co-adapted gene-complexes. Selection favours memes that exploit their cultural environment to their own advantage. This cultural environment consists of other memes which are also being selected. The meme pool therefore comes to have the attributes of an evolutionarily stable set, which new memes find it hard to invade.

  I have been a bit negative about memes, but they have their cheerful side as well. When we die there are two things we can leave behind us: genes and memes. We were built as gene machines, created to pass on our genes. But that aspect of us will be forgotten in three generations. Your child, even your grandchild, may bear a resemblance to you, perhaps in facial features, in a talent for music, in the colour of her hair. But as each generation passes, the contribution of your genes is halved. It does not take long to reach negligible proportions. Our genes may be immortal but the collection of genes that is any one of us is bound to crumble away. Elizabeth II is a direct descendant of William the Conqueror. Yet it is quite probable that she bears not a single one of the old king's genes. We should not seek immortality in reproduction.

  But if you contribute to the world's culture, if you have a good idea, compose a tune, invent a sparking plug, write a poem, it may live on, intact, long after your genes have dissolved in the common pool. Socrates may or may not have a gene or two alive in the world today, as G. C. Williams has remarked, but who cares? The meme-complexes of Socrates, Leonardo, Copernicus and Marconi are still going strong.

  However speculative my development of the theory of memes may be, there is one serious point which I would like to emphasize once again. This is that when we look at the evolution of cultural traits and at their survival value, we must be clear whose survival we are talking about. Biologists, as we have seen, are accustomed to looking for advantages at the gene level (or the individual, the group, or the species level according to taste). What we have not previously considered is that a cultural trait may have evolved in the way that it has, simply because it is advantageous to itself.

  We do not have to look for conventional biological survival values of traits like religion, music, and ritual dancing, though these may also be present. Once the genes have provided their survival machines with brains that are capable of rapid imitation, the memes will automatically take over. We do not even have to posit a genetic advantage in imitation, though that would certainly help. All that is necessary is that the brain should be capable of imitation: memes will then evolve that exploit the capability to the full.

  I now close the topic of the new replicators, and end the chapter on a note of qualified hope. One unique feature of man, which may or may not have evolved memically, is his capacity for conscious foresight. Selfish genes (and, if you allow the speculation of this chapter, memes too) have no foresight. They are unconscious, blind, replicators. The fact that they replicate, together with certain further conditions means, willy nilly, that they will tend towards the evolution of qualities which, in the special sense of this book, can be called selfish. A simple replicator, whether gene or meme, cannot be expected to forgo short-term selfish advantage even if it would really pay it, in the long term, to do so. We saw this in the chapter on aggression. Even though a 'conspiracy of doves' would be better for every single individual than the evolutionarily stable strategy, natural selection is bound to favour the ESS.

  It is possible that yet another unique quality of man is a capacity for genuine, disinterested, true altruism. I hope so, but I am not going to argue the case one way or the other, nor to speculate over its possible memic evolution. The point I am making now is that, even if we look on the dark side and assume that individual man is fundamentally selfish, our conscious foresight-our capacity to simulate the future in imagination-could save us from the worst selfish excesses of the blind
replicators. We have at least the mental equipment to foster our long-term selfish interests rather than merely our short-term selfish interests. We can see the long-term benefits of participating in a 'conspiracy of doves', and we can sit down together to discuss ways of making the conspiracy work. We have the power to defy the selfish genes of our birth and, if necessary, the selfish memes of our indoctrination. We can even discuss ways of deliberately cultivating and nurturing pure, disinterested altruism- something that has no place in nature, something that has never existed before in the whole history of the world. We are built as gene machines and cultured as meme machines, but we have the power to turn against our creators. We, alone on earth, can rebel against the tyranny of the selfish replicators.

  Nice guys finish first

  Nice guys finish last. The phrase seems to have originated in the world of baseball, although some authorities claim priority for an alternative connotation. The American biologist Garrett Hardin used it to summarize the message of what may be called 'Sociobiology' or 'selfish genery'. It is easy to see its aptness. If we translate the colloquial meaning of 'nice guy' into its Darwinian equivalent, a nice guy is an individual that assists other members of its species, at its own expense, to pass their genes on to the next generation. Nice guys, then, seem bound to decrease in numbers: niceness dies a Darwinian death. But there is another, technical, interpretation of the colloquial word 'nice'. If we adopt this definition, which is not too far from the colloquial meaning, nice guys can finish first. This more optimistic conclusion is what this chapter is about.

  Remember the Grudgers of Chapter 10. These were birds that helped each other in an apparently altruistic way, but refused to help-bore a grudge against-individuals that had previously refused to help them. Grudgers came to dominate the population because they passed on more genes to future generations than either Suckers (who helped others indiscriminately, and were exploited) or Cheats (who tried ruthlessly to exploit everybody and ended up doing each other down). The story of the Grudgers illustrated an important general principle, which Robert Trivers called 'reciprocal altruism'. As we saw in the example of the cleaner fish, reciprocal altruism is not confined to members of a single species. It is at work in all relationships that are called symbiotic-for instance the ants milking their aphid 'cattle'. Since Chapter 10 was written, the American political scientist Robert Axelrod (working partly in collaboration with W. D. Hamilton, whose name has cropped up on so many pages of this book), has taken the idea of reciprocal altruism on in exciting new directions. It was Axelrod who coined the technical meaning of the word 'nice' to which I alluded in my opening paragraph.

  Axelrod, like many political scientists, economists, mathematicians and psychologists, was fascinated by a simple gambling game called Prisoner's Dilemma. It is so simple that I have known clever men misunderstand it completely, thinking that there must be more to it! But its simplicity is deceptive. Whole shelves in libraries are devoted to the ramifications of this beguiling game. Many influential people think it holds the key to strategic defence planning, and that we should study it to prevent a third world war. As a biologist, I agree with Axelrod and Hamilton that many wild animals and plants are engaged in ceaseless games of Prisoner's Dilemma, played out in evolutionary time.

  In its original, human, version, here is how the game is played. There is a 'banker', who adjudicates and pays out winnings to the two players. Suppose that I am playing against you (though, as we shall see, 'against' is precisely what we don't have to be). There are only two cards in each of our hands, labelled cooperate and defect. To play, we each choose one of our cards and lay it face down on the table. Face down so that neither of us can be influenced by the other's move: in effect, we move simultaneously. We now wait in suspense for the banker to turn the cards over. The suspense is because our winnings depend not just on which card we have played (which we each know), but on the other player's card too (which we don't know until the banker reveals it).

  Since there are 2 x 2 cards, there are four possible outcomes. For each outcome, our winnings are as follows (quoted in dollars in deference to the North American origins of the game):

  Outcome I: We have both played cooperate. The banker pays each of us $300. This respectable sum is called the Reward for mutual cooperation.

  Outcome 11: We have both played defect. The banker fines each of us $10. This is called the Punishment for mutual defection.

  Outcome III: You have played cooperate; I have played defect. The banker pays me $500 (the Temptation to defect) and fines you (the Sucker) $100.

  Outcome IV: You have played defect; I have played cooperate. The banker pays you the Temptation payoff of $500 and fines me, the Sucker, $100.

  Outcomes III and IV are obviously mirror images: one player does very well and the other does very badly. In outcomes I and 11 we do as well as one another, but I is better for both of us than II. The exact quantities of money don't matter. It doesn't even matter how many of them are positive (payments) and how many of them, if any, are negative (fines). What matters, for the game to qualify as a true Prisoner's Dilemma, is their rank order. The Temptation to defect must be better than the Reward for mutual cooperation, which must be better than the Punishment for mutual defection, which must be better than the Sucker's payoff. (Strictly speaking, there is one further condition for the game to qualify as a true Prisoner's Dilemma: the average of the Temptation and the Sucker payoffs must not exceed the Reward. The reason for this additional condition will emerge later.) The four outcomes are summarized in the payoff matrix in Figure A.

  Figure A. Payoffs to me from various outcomes of the Prisoner's Dilemma game

  Now, why the 'dilemma'? To see this, look at the payoff matrix and imagine the thoughts that might go through my head as I play against you. I know that there are only two cards you can play, cooperate and defect. Let's consider them in order. If you have played defect (this means we have to look at the right hand column), the best card I could have played would have been defect too. Admittedly I'd have suffered the penalty for mutual defection, but if I'd cooperated I'd have got the Sucker's payoff which is even worse. Now let's turn to the other thing you could have done (look at the left hand column), play the cooperate card. Once again defect is the best thing I could have done. If I had cooperated we'd both have got the rather high score of $300. But if I'd defected I'd have got even more-$500. The conclusion is that, regardless of which card you play, my best move is Always Defect.

  So I have worked out by impeccable logic that, regardless of what you do, I must defect. And you, with no less impeccable logic, will work out just the same thing. So when two rational players meet, they will both defect, and both will end up with a fine or a low payoff. Yet each knows perfectly well that, if only they had both played cooperate, both would have obtained the relatively high reward for mutual cooperation ($300 in our example). That is why the game is called a dilemma, why it seems so maddeningly paradoxical, and why it has even been proposed that there ought to be a law against it.

  'Prisoner' comes from one particular imaginary example. The currency in this case is not money but prison sentences. Two men- call them Peterson and Moriarty-are in jail, suspected of collaborating in a crime. Each prisoner, in his separate cell, is invited to betray his colleague (defect) by turning King's Evidence against him. What happens depends upon what both prisoners do, and neither knows what the other has done. If Peterson throws the blame entirely on Moriarty, and Moriarty renders the story plausible by remaining silent (cooperating with his erstwhile and, as it turns out, treacherous friend), Moriarty gets a heavy jail sentence while Peterson gets off scot-free, having yielded to the Temptation to defect. If each betrays the other, both are convicted of the crime, but receive some credit for giving evidence and get a somewhat reduced, though still stiff, sentence, the Punishment for mutual defection. If both cooperate (with each other, not with the authorities) by refusing to speak, there is not enough evidence to convict either of them of th
e main crime, and they receive a small sentence for a lesser offence, the Reward for mutual cooperation. Although it may seem odd to call a jail sentence a 'reward', that is how the men would see it if the alternative was a longer spell behind bars. You will notice that, although the 'payoffs' are not in dollars but in jail sentences, the essential features of the game are preserved (look at the rank order of desirability of the four outcomes). If you put yourself in each prisoner's place, assuming both to be motivated by rational self-interest and remembering that they cannot talk to one another to make a pact, you will see that neither has any choice but to betray the other, thereby condemning both to heavy sentences.

  Is there any way out of the dilemma? Both players know that, whatever their opponent does, they themselves cannot do better than defect; yet both also know that, if only both had cooperated, each one would have done better. If only . .. if only . .. if only there could be some way of reaching agreement, some way of reassuring each player that the other can be trusted not to go for the selfish jackpot, some way of policing the agreement.

  In the simple game of Prisoner's Dilemma, there is no way of ensuring trust. Unless at least one of the players is a really saintly sucker, too good for this world, the game is doomed to end in mutual defection with its paradoxically poor result for both players. But there is another version of the game. It is called the 'Iterated' or 'Repeated' Prisoner's Dilemma. The iterated game is more complicated, and in its complication lies hope.