Page 11 of Musicophilia

I was reminded here of my patient Virgil, who had been virtually blind all his life and then, at the age of fifty, had gained sight following eye surgery.10 But his new sight was very limited and fragile (in large part because, with very limited early vision, his brain had never developed robust visual cognitive systems). So vision was taxing for him, and when he shaved, for example, he could see and recognize his face in the mirror at first, but after a few minutes, he would have to struggle to hold on to a recognizable visual world. Finally, he would give up and shave by touch, because the visual image of his face had decomposed into unrecognizable fragments.

  Rachael had, in fact, also developed some visual problems following the accident, peculiar problems of visual synthesis— though, with typical resourcefulness, she had managed to turn these to creative use. She had, to some degree, a difficulty in synthesizing the elements of an entire scene at a glance, a visual simultagnosia analogous to her auditory one. Thus she would notice one thing, then another, then a third; her attention would be commandeered successively by different elements, and she could piece the scene together as a whole only slowly and with difficulty, in an intellectual rather than a perceptual way. Her paintings and collages made use of this weakness and, indeed, turned it into a strength, disassembling the visual world and reassembling it in new ways.

  Though her apartment is now hung with her many paintings and collages, Rachael has not been able to write music since her accident in 1993. The chief reason for this is another sort of amusia, a lack of musical imagery. Before the accident, she used to compose in her head, without a piano, straight onto manuscript paper. But now, she says, she cannot “hear” what she is writing. She once had the most vivid musical imagery, and as soon as she looked at a score— her own or another composer’s— she could hear the music in her mind with full orchestral or choral complexity. This musical imagery has been virtually extinguished by her injury, and that makes it difficult for her to transcribe what she has just improvised, for as soon as she reaches for her manuscript paper, in the seconds it takes her to put pen in hand, the music she has just played evaporates from her mind. With the difficulty in imagery comes a difficulty in working memory, and this makes it impossible for her to retain what she has just composed. “This is the major loss,” she told me. “I need a mediator between me and the printed page.” A crucial breakthrough thus came for her in 2006, when she found a young collaborator and learned with him to use a music-processing computer. The computer can hold in its memory what she cannot hold in her own, and Rachael can now explore the themes that she has created on the piano and transform them into notation or into the voices of different instruments. She can achieve a continuity with her own compositions, and orchestrate or develop them, with the help of her collaborator and her computer.

  Rachael has now embarked on her first large-scale composition since her accident thirteen years ago. She has decided to take a string quartet, one of the last works she wrote before her accident, to disassemble it and reassemble it in a new way— as she says, to “cut it into the wind, collect the parts, and put it together in a new form.” She wants to incorporate the ambient sounds which she is now so conscious of, “to weave sounds together that are not meant to be musical,” to compose a new sort of music. Against the background of this, she herself will improvise by breathing, singing, and playing a variety of instruments (her worktable, when I visited her, contained an alto recorder, a Chinese jade flute, a Syrian flute, plumber’s brass tubing, bells and drums, and an assortment of wooden rhythm instruments). The sound, the music, will be interwoven with projections of visual forms and patterns provided by photographs she has taken.

  She played for me, on her computer, a small sample of the finished piece, which starts with “Breathing…a darkness.” Though she agrees with Stravinsky that music does not represent anything but itself, when she composed this opening, her mind was full of the idea of coma and near death, a time when, for days, the sound of her own breathing, amplified by a respirator, was almost the only sound she heard. This opening passage is followed by “incoherent fragments, a shattered world,” as she puts it, representing her own broken awareness at a time when “nothing made sense.” There are agitated, strongly rhythmic pizzicatos at this point, and unexpected sounds of all sorts. Then comes a strongly melodic passage, her recomposing a world, and finally darkness and breathing again— but “a free breathing,” she says, representing “reconciliation, acceptance.”

  Rachael thinks of this new piece, to some extent, as autobiographic, a “rediscovery of identity.” And when it is performed next month, it will be her coming out, her first return to the world of musical composition and performance, the public world, in thirteen years.

  9

  Papa Blows His Nose in G: Absolute Pitch

  People with absolute pitch can immediately, unthinkingly tell the pitch of any note, without either reflection or comparison with an external standard. They can do this not only with any note they hear, but with any note they imagine or hear in their heads. Indeed, Gordon B., a professional violinist who wrote to me about tinnitus, or ringing in his ears, remarked matter-of-factly that his tinnitus was “a high F-natural.” He did not realize, I think, that saying this was in any way unusual; but of the millions of people with tinnitus, probably not one in ten thousand could say what pitch their tinnitus has.

  The precision of absolute pitch varies, but it is estimated that most people with it can identity upwards of seventy tones in the middle region of the auditory range, and each of these seventy tones has, for them, a unique and characteristic quality that distinguishes it absolutely from any other note.

  The Oxford Companion to Music was a sort of Arabian Nights for me as a boy, an inexhaustible source of musical stories, and it gives many charming examples of absolute pitch. Sir Frederick Ouseley, a former professor of music at Oxford, for example, “was all his life remarkable for his sense of absolute pitch. At five he was able to remark, ‘Only think, Papa blows his nose in G.’ He would say that it thundered in G or that the wind was whistling in D, or that the clock (with a two-note chime) struck in B minor, and when the assertion was tested it would invariably be found correct.” For most of us, such an ability to recognize an exact pitch seems uncanny, almost like another sense, a sense we can never hope to possess, such as infrared or X-ray vision; but for those who are born with absolute pitch, it seems perfectly normal.

  The Finnish entomologist Olavi Sotavalta, an expert on the sounds of insects in flight, was greatly assisted in his studies by having absolute pitch— for the sound pitch of an insect in flight is produced by the frequency of its wingbeats. Not content with musical notation, Sotavalta was able to estimate very exact frequencies by ear. The sound pitch made by the moth Plusia gamma approximates a low F-sharp, but Sotavalta could estimate it more precisely as having a frequency of 46 cycles per second. Such an ability, of course, requires not only a remarkable ear, but a knowledge of the scales and frequencies with which pitch can be correlated.

  Yet such a correlation, though immensely impressive, deflects attention from the real wonder of absolute pitch: to those with absolute pitch, every tone, every key seems qualitatively different, each possessing its own “flavor” or “feel,” its own character. Those who have absolute pitch often compare it to color— they “hear” G-sharpness as instantly and automatically as we “see” blue. (Indeed, the word “chroma” is sometimes used in musical theory.)

  While absolute pitch may sound like a delicious extra sense, allowing one to instantly sing or notate any music at its correct pitch, it may cause problems too. One such problem occurs with the inconstant tuning of musical instruments. Thus the seven-year-old Mozart, comparing his own little violin to that of his friend Schactner, said, “If you have not altered the tuning of your violin since I last played on it, it is half a quarter of a tone flatter than mine here.” (So it is related in The Oxford Companion to Music; there are many tales about Mozart’s ear, some no doubt apocryphal.) When t
he composer Michael Torke encountered my own ancient piano, which— still having its original nineteenth-century strings— is not tuned up to the 440 cycles per second standard of modern pianos, he instantly remarked that it was a third of a tone flat. Such an overall sharpness or flatness would not be noticed by someone without absolute pitch, but it can be distressing and even disabling to those who do have it. The Oxford Companion to Music again gives many examples, including one of an eminent pianist who, playing the Moonlight Sonata (a piece which “every schoolgirl plays”), got through it only “with the greatest difficulty” because the piano was tuned to a pitch he was not accustomed to, and he “experienced the distress of playing the piece in one key and hearing it in another.”

  When people with absolute pitch “hear a familiar piece of music played in the wrong key,” Daniel Levitin and Susan Rogers write, “they often become agitated or disturbed…. To get a sense of what it is like, imagine going to the produce market and finding that, because of a temporary disorder of visual processing, the bananas all appear orange, the lettuce yellow and the apples purple.”

  Transposing music from one key to another is something which any competent musician can do easily and almost automatically. But for someone with absolute pitch, each key has its own unique character, and the key in which one has always heard a piece is likely to be felt as the only right one. Transposing a piece of music, for someone with absolute pitch, can be analogous to painting a picture with all the wrong colors.

  Another difficulty was mentioned to me by the neurologist and musician Steven Frucht, who himself has absolute pitch. He sometimes experiences a certain difficulty in hearing intervals or harmonies because he is so conscious of the chroma of the notes that compose them. If, for example, one plays a C on the piano and the F-sharp above this, he might be so conscious of the C-ness of the C and the F-sharpness of the F-sharp that he fails to notice that they form a tritone, a dissonance which makes most people wince.1

  Absolute pitch is not necessarily of much importance even to musicians— Mozart had it, but Wagner and Schumann lacked it. But for anyone who has it, the loss of absolute pitch may be felt as a severe privation. This sense of loss was clearly brought out by one of my patients, Frank V., a composer who suffered brain damage from the rupture of an aneurysm of the anterior communicating artery. Frank was highly gifted musically, and had been musically trained since the age of four. He had had absolute pitch as long as he could recall, but now, he said, “it is gone, or it has certainly been eroded.” Since absolute pitch was of advantage to him as a musician, he felt its “erosion” keenly. Originally, he said, he perceived pitches instantly, absolutely, as he perceived colors— no “mental process” was involved, no inference, no reference to other pitches or intervals or scales. This form of absolute pitch had vanished completely; it was, he said, as if he had become “colorblind” in this regard. But as he convalesced from his brain injury, he found that he still possessed reliable pitch memories of certain pieces and certain instruments, and he could use these reference points to infer other pitches— though this, in comparison to his “instant” absolute pitch, was a slower process.

  It was also, subjectively, entirely different, for previously every note and every key had had a distinctive flavor for him, a character uniquely its own. Now all of this was gone, and there was no longer any real difference, for him, between one key and another.2

  * * *

  IT SEEMS CURIOUS, in a way, that absolute pitch is so rare (it is estimated as occurring in less than one person in ten thousand). Why don’t all of us hear “G-sharpness” as automatically as we see blue or smell a rose? “The real question concerning absolute pitch,” wrote Diana Deutsch et al. in 2004, “…is not why some people possess it, but rather why it is not universal. It is as though most people have a syndrome with respect to the labeling of pitches which is like color anomia, in which the patient can recognize colors, and discriminate between them, but cannot associate them with verbal labels.”

  Deutsch speaks here from personal experience as well. As she wrote to me in a recent letter:

  My realization that I had absolute pitch— and that this was unusual— came in the form of a great surprise when I discovered, at age 4, that other people had difficulty naming notes out of context. I still remember vividly my shock at discovering that when I played a note on the piano, others had to see what key was being struck in order to name it….

  To give you a sense of how strange a lack of absolute pitch appears to those of us who have it, take color naming as an analogy. Suppose you showed someone a red object and asked him to name the color. And suppose he answered, “I can recognize the color, and I can discriminate it from other colors, but I just can’t name it.” Then you juxtaposed a blue object and named its color, and he responded, “OK, since the second color is blue, the first one must be red.” I believe that most people would find this process rather bizarre. Yet from the perspective of someone with absolute pitch this is precisely how most people name pitches— they evaluate the relationship between the pitch to be named and another pitch whose name they already know…. When I hear amusical note and identify its pitch, much more happens than simply placing its pitch on a point (or in a region) along a continuum. Suppose I hear an F-sharp sounded on the piano. I obtain a strong sense of familiarity for “F-sharpness”— like the sense one gets when one recognizes a familiar face. The pitch is bundled in with other attributes of the note— its timbre (very importantly), its loudness, and so on. I believe that, at least for some people with absolute pitch, notes are perceived and remembered in a way that is far more concrete than for those who do not possess this faculty.

  Absolute pitch is of special interest because it exemplifies a whole other realm of perception, of qualia, something which most of us cannot even begin to imagine; because it is an isolated ability with little inherent connection to musicality or anything else; and because it shows how genes and experience can interact in its production.

  It has long been clear anecdotally that absolute pitch is commoner in musicians than in the general public, and this has been confirmed by large-scale studies. Among musicians, absolute pitch is commoner in those who have had musical training from an early age. But the correlation does not always hold: many gifted musicians fail to develop absolute pitch, despite intensive early training. It is commoner in certain families— but is this because of a genetic component or because some families provide a richer musical environment? There is a striking association of absolute pitch with early blindness (some studies estimate that about 50 percent of children born blind or blinded in infancy have absolute pitch).

  One of the most intriguing correlations occurs between absolute pitch and linguistic background. For the past few years, Diana Deutsch and her colleagues have studied such correlations in greater detail, and they observed in a 2006 paper that “native speakers of Vietnamese and Mandarin show very precise absolute pitch in reading lists of words” most of these subjects showed variation of a quarter tone or less. Deutsch et al. have also showed very dramatic differences in the incidence of absolute pitch in two populations of first-year music students: one at the Eastman School of Music in Rochester, New York, and the other at the Central Conservatory of Music in Beijing. “For students who had begun musical training between ages 4 and 5,” they wrote, “approximately 60% of the Chinese students met the criterion for absolute pitch, while only about 14% of the US nontone language speakers met the criterion.” For those who had begun musical training at age six or seven, the numbers in both groups were correspondingly lower, about 55 percent and 6 percent. And for students who had begun musical training later still, at age eight or nine, “roughly 42% of the Chinese students met the criterion while none of the US nontone language speakers did so.” There were no differences between genders in either group.

  This striking discrepancy led Deutsch et al. to conjecture that “if given the opportunity, infants can acquire AP as a feature of speech, which can
then carry over to music.” For speakers of a nontonal language such as English, they felt, “the acquisition of AP during music training is analogous to learning the tones of a second language.” They observed that there was a critical period for the development of absolute pitch, before the age of eight or so— roughly the same age at which children find it much more difficult to learn the phonemes of another language (and thus to speak a second language with a native accent). Deutsch et al. suggested, therefore, that all infants might have the potential for acquiring absolute pitch, which could perhaps be “realized by enabling infants to associate pitches with verbal labels during the critical period” for language acquisition. (They did not exclude the possibility, nonetheless, that genetic differences might be important, too.)

  The neural correlates of absolute pitch have been illuminated by comparing the brains of musicians with and without absolute pitch using a refined form of structural brain imaging (MRI morphometry), and by functional imaging of the brain as subjects identify musical tones and intervals. A 1995 paper by Gottfried Schlaug and his colleagues showed that in musicians with absolute pitch (but not musicians without), there was an exaggerated asymmetry between the volumes of the right and left planum temporale, structures in the brain that are important for the perception of speech and music. Similar asymmetries in the size and activity of the planum temporale have been shown in other people with absolute pitch.3

  Absolute pitch is not just a matter of pitch perception. People with absolute pitch must be able not only to perceive precise pitch differences, but to label them, to line them up with the notes or names of a musical scale. It is this ability which Frank V. lost with the frontal lobe damage caused by the rupture of his cerebral aneurysm. The additional cerebral mechanisms required to correlate pitch and label are in the frontal lobes, and this, too, can be seen in functional MRI studies; thus, if someone with absolute pitch is asked to name tones or intervals, MRIs will show focal activation in certain associative areas of the frontal cortex. In those with relative pitch, this region is activated only when naming intervals.