The Feynman sum over histories does allow travel into the past on a microscopic scale. In Chapter 9 we saw that the laws of science are unchanged by combinations of the operations C, P, and T. This means that an antiparticle spinning in the anticlockwise direction and moving from A to B can also be viewed as an ordinary particle spinning clockwise and moving backward in time from B to A. Similarly, an ordinary particle moving forward in time is equivalent to an antiparticle moving backward in time. As has been discussed in this chapter and Chapter 7, “empty” space is filled with pairs of virtual particles and antiparticles that appear together, move apart, and then come back together and annihilate each other.
So, one can regard the pair of particles as a single particle moving on a closed loop in space-time. When the pair is moving forward in time (from the event at which it appears to that at which it annihilates), it is called a particle. But when the particle is traveling back in time (from the event at which the pair annihilates to that at which it appears), it is said to be an antiparticle traveling forward in time.
The explanation of how black holes can emit particles and radiation (given in Chapter 7) was that one member of a virtual particle/antiparticle pair (say, the antiparticle) might fall into the black hole, leaving the other member without a partner with which to annihilate. The forsaken particle might fall into the hole as well, but it might also escape from the vicinity of the black hole. If so, to an observer at a distance it would appear to be a particle emitted by the black hole.
One can, however, have a different but equivalent intuitive picture of the mechanism for emission from black holes. One can regard the member of the virtual pair that fell into the black hole (say, the antiparticle) as a particle traveling backward in time out of the hole. When it gets to the point at which the virtual particle/antiparticle pair appeared together, it is scattered by the gravitational field into a particle traveling forward in time and escaping from the black hole. If, instead, it were the particle member of the virtual pair that fell into the hole, one could regard it as an antiparticle traveling back in time and coming out of the black hole. Thus the radiation by black holes shows that quantum theory allows travel back in time on a microscopic scale and that such time travel can produce observable effects.
One can therefore ask: does quantum theory allow time travel on a macroscopic scale, which people could use? At first sight, it seems it should. The Feynman sum over histories proposal is supposed to be over all histories. Thus it should include histories in which space-time is so warped that it is possible to travel into the past. Why then aren’t we in trouble with history? Suppose, for example, someone had gone back and given the Nazis the secret of the atom bomb?
One would avoid these problems if what I call the chronology protection conjecture holds. This says that the laws of physics conspire to prevent macroscopic bodies from carrying information into the past. Like the cosmic censorship conjecture, it has not been proved but there are reasons to believe it is true.
The reason to believe that chronology protection operates is that when space-time is warped enough to make travel into the past possible, virtual particles moving on closed loops in space-time can become real particles traveling forward in time at or below the speed of light. As these particles can go round the loop any number of times, they pass each point on their route many times. Thus their energy is counted over and over again and the energy density will become very large. This could give space-time a positive curvature that would not allow travel into the past. It is not yet clear whether these particles would cause positive or negative curvature or whether the curvature produced by some kinds of virtual particles might cancel that produced by other kinds. Thus the possibility of time travel remains open. But I’m not going to bet on it. My opponent might have the unfair advantage of knowing the future.
CHAPTER 11
THE UNIFICATION
OF PHYSICS
As was explained in the first chapter, it would be very difficult to construct a complete unified theory of everything in the universe all at one go. So instead we have made progress by finding partial theories that describe a limited range of happenings and by neglecting other effects or approximating them by certain numbers. (Chemistry, for example, allows us to calculate the interactions of atoms, without knowing the internal structure of an atom’s nucleus.) Ultimately, however, one would hope to find a complete, consistent, unified theory that would include all these partial theories as approximations, and that did not need to be adjusted to fit the facts by picking the values of certain arbitrary numbers in the theory. The quest for such a theory is known as “the unification of physics.” Einstein spent most of his later years unsuccessfully searching for a unified theory, but the time was not ripe: there were partial theories for gravity and the electromagnetic force, but very little was known about the nuclear forces. Moreover, Einstein refused to believe in the reality of quantum mechanics, despite the important role he had played in its development. Yet it seems that the uncertainty principle is a fundamental feature of the universe we live in. A successful unified theory must, therefore, necessarily incorporate this principle.
As I shall describe, the prospects for finding such a theory seem to be much better now because we know so much more about the universe. But we must beware of overconfidence—we have had false dawns before! At the beginning of this century, for example, it was thought that everything could be explained in terms of the properties of continuous matter, such as elasticity and heat conduction. The discovery of atomic structure and the uncertainty principle put an emphatic end to that. Then again, in 1928, physicist and Nobel Prize winner Max Born told a group of visitors to Göttingen University, “Physics, as we know it, will be over in six months.” His confidence was based on the recent discovery by Dirac of the equation that governed the electron. It was thought that a similar equation would govern the proton, which was the only other particle known at the time, and that would be the end of theoretical physics. However, the discovery of the neutron and of nuclear forces knocked that one on the head too. Having said this, I still believe there are grounds for cautious optimism that we may now be near the end of the search for the ultimate laws of nature.
In previous chapters I have described general relativity, the partial theory of gravity, and the partial theories that govern the weak, the strong, and the electromagnetic forces. The last three may be combined in so-called grand unified theories, or GUTs, which are not very satisfactory because they do not include gravity and because they contain a number of quantities, like the relative masses of different particles, that cannot be predicted from the theory but have to be chosen to fit observations. The main difficulty in finding a theory that unifies gravity with the other forces is that general relativity is a “classical” theory; that is, it does not incorporate the uncertainty principle of quantum mechanics. On the other hand, the other partial theories depend on quantum mechanics in an essential way. A necessary first step, therefore, is to combine general relativity with the uncertainty principle. As we have seen, this can produce some remarkable consequences, such as black holes not being black, and the universe not having any singularities but being completely self-contained and without a boundary. The trouble is, as explained in Chapter 7, that the uncertainty principle means that even “empty” space is filled with pairs of virtual particles and antiparticles. These pairs would have an infinite amount of energy and, therefore, by Einstein’s famous equation E = mc2, they would have an infinite amount of mass. Their gravitational attraction would thus curve up the universe to infinitely small size.
Rather similar, seemingly absurd infinities occur in the other partial theories, but in all these cases the infinities can be canceled out by a process called renormalization. This involves canceling the infinities by introducing other infinities. Although this technique is rather dubious mathematically, it does seem to work in practice, and has been used with these theories to make predictions that agree with observations to an extra
ordinary degree of accuracy. Renormalization, however, does have a serious drawback from the point of view of trying to find a complete theory, because it means that the actual values of the masses and the strengths of the forces cannot be predicted from the theory, but have to be chosen to fit the observations.
In attempting to incorporate the uncertainty principle into general relativity, one has only two quantities that can be adjusted: the strength of gravity and the value of the cosmological constant. But adjusting these is not sufficient to remove all the infinities. One therefore has a theory that seems to predict that certain quantities, such as the curvature of space-time, are really infinite, yet these quantities can be observed and measured to be perfectly finite! This problem in combining general relativity and the uncertainty principle had been suspected for some time, but was finally confirmed by detailed calculations in 1972. Four years later, a possible solution, called “supergravity,” was suggested. The idea was to combine the spin-2 particle called the graviton, which carries the gravitational force, with certain other particles of spin 3/2, 1, ½, and 0. In a sense, all these particles could then be regarded as different aspects of the same “superparticle,” thus unifying the matter particles with spin ½ and 3/2 with the force-carrying particles of spin 0, 1, and 2. The virtual particle/antiparticle pairs of spin ½ and 3/2 would have negative energy, and so would tend to cancel out the positive energy of the spin 2, 1, and 0 virtual pairs. This would cause many of the possible infinities to cancel out, but it was suspected that some infinities might still remain. However, the calculations required to find out whether or not there were any infinities left uncanceled were so long and difficult that no one was prepared to undertake them. Even with a computer it was reckoned it would take at least four years, and the chances were very high that one would make at least one mistake, probably more. So one would know one had the right answer only if someone else repeated the calculation and got the same answer, and that did not seem very likely!
Despite these problems, and the fact that the particles in the supergravity theories did not seem to match the observed particles, most scientists believed that supergravity was probably the right answer to the problem of the unification of physics. It seemed the best way of unifying gravity with the other forces. However, in 1984 there was a remarkable change of opinion in favor of what are called string theories. In these theories the basic objects are not particles, which occupy a single point of space, but things that have a length but no other dimension, like an infinitely thin piece of string. These strings may have ends (the so-called open strings) or they may be joined up with themselves in closed loops (closed strings) (Fig. 11.1 and Fig. 11.2). A particle occupies one point of space at each instant of time. Thus its history can be represented by a line in space-time (the “world-line”). A string, on the other hand, occupies a line in space at each moment of time. So its history in space-time is a two-dimensional surface called the world-sheet. (Any point on such a world-sheet can be described by two numbers, one specifying the time and the other the position of the point on the string.) The world-sheet of an open string is a strip: its edges represent the paths through space-time of the ends of the string (Fig. 11.1). The world-sheet of a closed string is a cylinder or tube (Fig. 11.2): a slice through the tube is a circle, which represents the position of the string at one particular time.
Two pieces of string can join together to form a single string; in the case of open strings they simply join at the ends (Fig. 11.3), while in the case of closed strings it is like the two legs joining on a pair of trousers (Fig. 11.4). Similarly, a single piece of string can divide into two strings. In string theories, what were previously thought of as particles are now pictured as waves traveling down the string, like waves on a vibrating kite string. The emission or absorption of one particle by another corresponds to the dividing or joining together of strings. For example, the gravitational force of the sun on the earth was pictured in particle theories as being caused by the emission of a graviton by a particle in the sun and its absorption by a particle in the earth (Fig. 11.5). In string theory, this process corresponds to an H-shaped tube or pipe (Fig. 11.6) (string theory is rather like plumbing, in a way). The two vertical sides of the H correspond to the particles in the sun and the earth, and the horizontal crossbar corresponds to the graviton that travels between them.
FIGURE 11.1 AND FIGURE 11.2
FIGURE 11.3
String theory has a curious history. It was originally invented in the late 1960s in an attempt to find a theory to describe the strong force. The idea was that particles like the proton and the neutron could be regarded as waves on a string. The strong forces between the particles would correspond to pieces of string that went between other bits of string, as in a spiders web. For this theory to give the observed value of the strong force between particles, the strings had to be like rubber bands with a pull of about ten tons.
FIGURE 11.4
In 1974 Joël Scherk from Paris and John Schwarz from the California Institute of Technology published a paper in which they showed that string theory could describe the gravitational force, but only if the tension in the string were very much higher, about a thousand million million million million million million tons (1 with thirty-nine zeros after it). The predictions of the string theory would be just the same as those of general relativity on normal length scales, but they would differ at very small distances, less than a thousand million million million million millionth of a centimeter (a centimeter divided by 1 with thirty-three zeros after it). Their work did not receive much attention, however, because at just about that time most people abandoned the original string theory of the strong force in favor of the theory based on quarks and gluons, which seemed to fit much better with observations. Scherk died in tragic circumstances (he suffered from diabetes and went into a coma when no one was around to give him an injection of insulin). So Schwarz was left alone as almost the only supporter of string theory, but now with the much higher proposed value of the string tension.
FIGURE 11.5 AND FIGURE 11.6
In 1984 interest in strings suddenly revived, apparently for two reasons. One was that people were not really making much progress toward showing that supergravity was finite or that it could explain the kinds of particles that we observe. The other was the publication of a paper by John Schwarz and Mike Green of Queen Mary College, London, that showed that string theory might be able to explain the existence of particles that have a built-in left-handedness, like some of the particles that we observe. Whatever the reasons, a large number of people soon began to work on string theory and a new version was developed, the so-called heterotic string, which seemed as if it might be able to explain the types of particles that we observe.
String theories also lead to infinities, but it is thought they will all cancel out in versions like the heterotic string (though this is not yet known for certain). String theories, however, have a bigger problem: they seem to be consistent only if space-time has either ten or twenty-six dimensions, instead of the usual four! Of course, extra space-time dimensions are a commonplace of science fiction indeed, they provide an ideal way of overcoming the normal restriction of general relativity that one cannot travel faster than light or back in time (see Chapter 10). The idea is to take a shortcut through the extra dimensions. One can picture this in the following way. Imagine that the space we live in has only two dimensions and is curved like the surface of an anchor ring or torus (Fig. 11.7). If you were on one side of the inside edge of the ring and you wanted to get to a point on the other side, you would have to go round the inner edge of the ring. However, if you were able to travel in the third dimension, you could cut straight across.
FIGURE 11.7
Why don’t we notice all these extra dimensions, if they are really there? Why do we see only three space dimensions and one time dimension? The suggestion is that the other dimensions are curved up into a space of very small size, something like a million million million million millio
nth of an inch. This is so small that we just don’t notice it: we see only one time dimension and three space dimensions, in which space-time is fairly flat. It is like the surface of a straw. If you look at it closely, you see it is two-dimensional (the position of a point on the straw is described by two numbers, the length along the straw and the distance round the circular direction). But if you look at it from a distance, you don’t see the thickness of the straw and it looks one-dimensional (the position of a point is specified only by the length along the straw). So it is with space-time: on a very small scale it is ten-dimensional and highly curved, but on bigger scales you don’t see the curvature or the extra dimensions. If this picture is correct, it spells bad news for would-be space travelers: the extra dimensions would be far too small to allow a spaceship through. However, it raises another major problem. Why should some, but not all, of the dimensions be curled up into a small ball? Presumably, in the very early universe all the dimensions would have been very curved. Why did one time dimension and three space dimensions flatten out, while the other dimensions remain tightly curled up?
One possible answer is the anthropic principle. Two space dimensions do not seem to be enough to allow for the development of complicated beings like us. For example, two-dimensional animals living on a one-dimensional earth would have to climb over each other in order to get past each other. If a two-dimensional creature ate something it could not digest completely, it would have to bring up the remains the same way it swallowed them, because if there were a passage right through its body, it would divide the creature into two separate halves: our two-dimensional being would fall apart (Fig. 11.8). Similarly, it is difficult to see how there could be any circulation of the blood in a two-dimensional creature.