Page 24 of Pale Blue Dot


  Perhaps we should practice getting to these worldlets and diverting their orbits, should the hour of need ever arise. Melville notwithstanding, some of the chips of creation are still left, and improvements evidently need to be made. Along parallel and only weakly interacting tracks, the planetary science community and the U.S. and Russian nuclear weapons laboratories, aware of the foregoing scenarios, have been pursuing these questions: how to monitor all sizable near-Earth interplanetary objects, how to characterize their physical and chemical nature, how to predict which ones may be on a future collision trajectory with Earth, and, finally, how to prevent a collision from happening.

  The Russian spaceflight pioneer Konstantin Tsiolkovsky argued a century ago that there must be bodies intermediate ill size between the observed large asteroids and those asteroidal fragments, the meteorites, that occasionally fall to Earth. He wrote about living on small asteroids in interplanetary space. He did not have military applications in mind. In the early 1980s, though, some in the U.S. weapons establishment argued that the Soviets might use near-Earth asteroids as first-strike weapons; the alleged plan was called "Ivan's Hammer." Countermeasures were needed. But, at the same time, it was suggested, maybe it wasn't a bad idea for the United States to learn how to use small worlds as weapons of its own. The Defense Department's Ballistic Missile Defense Organization, the successor to the Star Wars office of the 1980s, launched an innovative spacecraft called Clementine to orbit the Moon and fly by the near-Earth asteroid Geographos. (After completing a remarkable reconnaissance of the Moon in May 1994, the spacecraft failed before it could reach Geographos.)

  In principle, you could use big rocket engines, or projectile impact, or equip tile asteroid with giant reflective panels and shove it with sunlight or powerful Earth-based lasers. But with technology that exists right now, there are only two ways. First, one or more high-yield nuclear weapons might blast the asteroid or comet into fragments that would disintegrate and atomize on entering the Earth's atmosphere. If the offending worldlet is only weakly held together, perhaps only hundreds of megatons would suffice. Since there is no theoretical upper limit to the explosive yield of a thermonuclear weapon, there seem to be those in the weapons laboratories who consider making bigger bombs not only as a stirring challenge, but also as a way to mute pesky environmentalists by securing a seat for nuclear weapons on the save-the-Earth bandwagon.

  Another approach under more serious discussion is less dramatic but still an effective way of maintaining the weapons establishment—a plan to alter the orbit of any errant worldlet by exploding nuclear weapons nearby. The explosions (generally near the asteroid's closest point to the Sun) are arranged to deflect it away from the Earth.1 A flurry of low-yield nuclear weapons, each giving a little push in the desired direction, is enough to deflect a medium-sized asteroid with only a few weeks' warning. The method also offers, it is hoped, a way to deal with a suddenly detected long-period comet on imminent collision trajectory with the Earth: The comet would be intercepted with a small asteroid. (Needless to say, this game of celestial billiards is even more difficult and uncertain—and therefore even less practical in the near future—than the herding of an asteroid on a known, well-behaved orbit with months or years at our disposal.)

  We don't know what a standoff nuclear explosion would do to an asteroid. The answer may vary from asteroid to asteroid. Some small worlds might be strongly held together; others might be little more than self-gravitating gravel heaps. If an explosion breaks, let's say, a 10kilometer asteroid up into hundreds of 1-kilometer fragments, the likelihood that at least one of them impacts the Earth is probably increased, and the apocalyptic character of the consequences may not be much reduced. On the other hand, if the explosion disrupts the asteroid into a swarm of objects a hundred meters in diameter or smaller, all of them might ablate away like giant meteors on entering the Earth's atmosphere. In this case little impact damage would be caused. Even if the asteroid were wholly pulverized into fine powder, though, the resulting high-altitude dust layer might be so opaque as to block the sunlight and change the climate. We do not yet know.

  A vision of dozens or hundreds of nuclear-armed missiles on ready standby to deal with threatening asteroids or comets has been offered. However premature in this particular application, it seems very familiar; only the enemy has been changed. It also seems very dangerous.

  The problem, Steven Ostro of JPL and I have suggested, is that if you can reliably deflect a threatening worldlet so it does not collide with the Earth, you can also reliably deflect a harmless worldlet so it does collide with the Earth. Suppose you had a full inventory, with orbits, of the estimated 300,000 near-Earth asteroids larger than 100 meters—each of them large enough, on impacting the Earth, to have serious consequences. Then, it turns out, you also have a list of huge numbers of inoffensive asteroids whose orbits could be altered with nuclear warheads so they quickly collide with the Earth.

  Suppose we restrict our attention to the 2,000 or so near-Earth asteroids that are a kilometer across or bigger—that is, the ones most likely to cause a global catastrophe. Today, with only about 100 of these objects catalogued, it would take about a century to catch one when it's easily deflectable to Earth and alter its orbit. We think we've found one, an as-yet-unnamed1 asteroid so far denoted only as 1991OA. In 2070, this world, about 1 kilometer in diameter, will come within 4.5 million kilometers of the Earth's orbit—only fifteen times the distance to the Moon. To deflect 1991OA so it hits the Earth, only about 60 megatons of TNT equivalent needs to be exploded in the right way—the equivalent of a small number of currently available nuclear warheads.

  Now imagine a time, a few decades hence, when all such near-Earth asteroids are inventoried and their orbits compiled. Then, as Alan Harris of JPL, Greg Canavan of the Los Alamos National Laboratory, Ostro, and I have shown, it might take only a year to select a suitable object, alter its orbit, and send it crashing into the Earth with cataclysmic effect.

  The technology required—large optical telescopes, sensitive detectors, rocket propulsion systems able to lift a few tons of payload and make precise rendezvous in nearby space, and thermonuclear weapons—all exist today. Improvements in all but perhaps the last can be confidently expected. If we're not careful, many nations may have these capabilities in the next few decades. What kind of world will we then have made?

  We have a tendency to minimize the dangers of new technologies. A year before the Chernobyl disaster, a Soviet nuclear power industry deputy minister was asked about the safety of Soviet reactors, and chose Chernobyl as a particularly safe site. The average waiting time to disaster, he confidently estimated, was a hundred thousand years. Less than a year later . . . devastation. Similar reassurances were provided by NASA contractors the year before the Challenger disaster: You would have to wait ten thousand years, they estimated, for a catastrophic failure of the shuttle. One year later . . . heartbreak.

  Chlorofluorocarbons (CFCs) were developed specifically as a completely safe refrigerant—to replace ammonia and other refrigerants that, on leaking out, had caused illness and some deaths. Chemically inert, nontoxic (in ordinary concentrations), odorless, tasteless, non-allergenic, nonflammable, CFCs represent a brilliant technical solution to a well-defined practical problem. They found uses in many other industries besides refrigeration and air conditioning. But, as I described above, the chemists who developed CFCs overlooked one essential fact—that the molecules' very inertness guarantees that they are circulated to stratospheric altitudes and there cracked open by sunlight, releasing chlorine atoms which then attack the protective ozone layer. Due to the work of a few scientists, the dangers may have been recognized and averted in time. We humans have now almost stopped producing CFCs. We won't actually know if we've avoided real harm for about a century; that's how long it takes for all the CFC damage to be completed. Like the ancient Camarinans, we make mistakes.1 Not only do we often ignore the warnings of the Oracles; characteristically we do not even c
onsult them.

  The notion of moving asteroids into Earth orbit has proved attractive to some space scientists and long-range planners. They foresee mining the minerals and precious metals of these worlds or providing resources for the construction of space infrastructure without having to fight the Earth's gravity to get them up there. Articles have been published on how to accomplish this end and what the benefits will be. In modern discussions, the asteroid is inserted into orbit around the Earth by first making it pass through and be braked by the Earth's atmosphere, a maneuver with very little margin for error. For the near future we can, I think, recognize this whole endeavor as unusually dangerous and foolhardy, especially for metal worldlets larger than tens of meters across. This is the one activity where errors in navigation or propulsion or mission design can have the most sweeping and catastrophic consequences.

  The foregoing are examples of inadvertence. But there's another kind of peril: We are sometimes told that this or that invention would of course not be misused. No sane person would be so reckless. This is the "only a madman" argument. Whenever I hear it (and it's often trotted out in such debates), I remind myself that madmen really exist. Sometimes they achieve the highest levels of political power in modern industrial nations. This is the century of Hitler and Stalin, tyrants who posed the gravest dangers not just to the rest of the human family, but to their own people as well. In the winter and spring of 1945, Hitler ordered Germany to be destroyed—even "what the people need for elementary survival"—because the surviving Germans had "betrayed" him, and at any rate were "inferior" to those who had already died. If Hitler had had nuclear weapons, the threat of a counterstrike by Allied nuclear weapons, had there been any, is unlikely to have dissuaded him. It might have encouraged him.

  Can we humans be trusted with civilization-threatening technologies? If the chance is almost one in a thousand that much of the human population will be killed by an impact in the next century, isn't it more likely that asteroid deflection technology will get into the wrong hands in another century—some misanthropic sociopath like a Hitler or a Stalin eager to kill everybody, a megalomaniac lusting after "greatness" and "glory," a victim of ethnic violence bent on revenge, someone in the grip of unusually severe testosterone poisoning, some religious fanatic hastening the Day of judgment, or just technicians incompetent or insufficiently vigilant in handling the controls and safeguards? Such people exist. The risks seem far worse than the benefits, the cure worse than the disease. The cloud of near-Earth asteroids through which the Earth plows may constitute a modern Camarine marsh.

  It's easy to think that all of this must be very unlikely, mere anxious fantasy. Surely sober heads would prevail. Think of how many people would be involved in preparing and launching warheads, in space navigation, in detonating warheads, in checking what orbital perturbation each nuclear explosion has made, in herding the asteroid so it is on an impact trajectory with Earth, and so on. Isn't it noteworthy that although Hitler gave orders for the retreating Nazi troops to burn Paris and to lay waste to Germany itself, his orders were not carried out? Surely someone essential to the success of the deflection mission will recognize the danger. Even assurances that the project is designed to destroy some vile enemy nation would probably be disbelieved, because the effects of collision are planet-wide (and anyway it's very hard to make sure your asteroid excavates its monster crater in a particularly deserving nation).

  But now imagine a totalitarian state, not overrun by enemy troops, but one thriving and self-confident. Imagine a tradition in which orders are obeyed without question. Imagine that those involved in the operation are supplied a cover story: The asteroid is about to impact the Earth, and it is their job to deflect it—but in order not to worry people needlessly, the operation must be performed in secret. In a military setting with a command hierarchy firmly in place, compartmentalization of knowledge, general secrecy, and a cover story, can we be confident that even apocalyptic orders would be disobeyed? Are we really sure that in the next decades and centuries and millennia, nothing like this might happen? How sure are we?

  It's no use saying that all technologies can be used for good or for ill. That is certainly true, but when the "ill" achieves a sufficiently apocalyptic scale, we may have to set limits on which technologies may be developed. (In a way we do this all the time, because we can't afford to develop all technologies. Some are favored and some are not.) Or constraints may have to be levied by the community of nations on madmen and autarchs and fanaticism.

  Tracking asteroids and comets is prudent, it's good science, and it doesn't cost much. But, knowing our weaknesses, why would we even consider now developing the technology to deflect small worlds? For safety, shall we imagine this technology in the hands of many nations, each providing checks and balances against misuse by another? This is nothing like the old nuclear balance of terror. It hardly inhibits some madman intent on global catastrophe to know that if he does not hurry, a rival may beat him to it. How confident can we be that the community of nations will be able to detect a cleverly designed, clandestine asteroid deflection in time to do something about it? If such a technology were developed, can any international safeguards be envisioned that have a reliability commensurate with the risk?

  Even if we restrict ourselves merely to surveillance, there's a risk. Imagine that in a generation we characterize the orbits of 30,000 objects of 100-meter diameter or more, and that this information is publicized, as of course it should be. Maps will be published showing near-Earth space black with the orbits of asteroids and comets, 30,000 swords of Damocles hanging over our heads-ten times more than the number of stars visible to the naked eye under conditions of optimum atmospheric clarity. Public anxiety might be much greater in such a time of knowledge than in our current age of ignorance. There might be irresistible public pressure to develop means to mitigate even nonexistent threats, which would then feed the danger that deflection technology would be misused. For this reason, asteroid discovery and surveillance may not be a mere neutral tool of future policy, but rather a kind of booby trap. To me, the only foreseeable solution is a combination of accurate orbit estimation, realistic threat assessment, and effective public education—so that in democracies at least, the citizens can make their own, informed decisions. This is a job for NASA.

  Near-Earth asteroids, and means of altering their orbits, are being looked at seriously. There is some sign that officials in the Department of Defense and the weapons laboratories are beginning to understand that there may be real dangers in planning to push asteroids around. Civilian and military scientists have met to discuss the subject. On first hearing about the asteroid hazard, many people think of it as a kind of Chicken Little fable; Goosey-Lucy, newly arrived and in great excitement, is communicating the urgent news that the sky is falling. The tendency to dismiss the prospect of any catastrophe that we have not personally witnessed is in the long run very foolish. But in this case it may be an ally of prudence.

  MEANWHILE WE MUST STILL FACE the deflection dilemma. If we develop and deploy this technology, it may do us in. If we don't, some asteroid or comet may do us in. The resolution of the dilemma hinges, I think, on the fact that the likely timescales of the two dangers are very different—short for the former, long for the latter.

  I like to think that our future involvement with near-Earth asteroids will go something like this: From ground-based observatories, we discover all the big ones, plot and monitor their orbits, determine rotation rates and compositions. Scientists are diligent in explaining the dangers—neither exaggerating nor muting the prospects. We send robotic spacecraft to fly by a few selected bodies, orbit them, land on them, and return surface samples to laboratories on Earth. Eventually we send humans. (Because of the low gravities, they will be able to make standing broad jumps of ten kilometers or more into the sky, and lob a baseball into orbit around the asteroid.) Fully aware of the dangers, we make no attempts to alter trajectories until the potential for misuse of world-al
tering technologies is much less. That might take a while.

  If we're too quick in developing the technology to move worlds around, we may destroy ourselves; if we're too slow, we will surely destroy ourselves. The reliability of world political organizations and the confidence they inspire will have to make significant strides before they can be trusted to deal with a problem of this seriousness. At the same time, there seems to be no acceptable national solution. Who would feel comfortable with the means of world destruction in the hands of some dedicated (or even potential) enemy nation, whether or not our nation had comparable powers? The existence of interplanetary collision hazards, when widely understood, works to bring our species together. When facing a common danger, we humans have sometimes reached heights widely thought impossible; we have set aside our differences—at least until the danger passed.

  But this danger never passes. The asteroids, gravitationally churning, are slowly altering their orbits; without warning, new comets come careening toward us from the transplutonian darkness. There will always be a need to deal with them in a way that does not endanger us. By posing two different classes of peril—one natural, the other human-made—the small near-Earth worlds provide a new and potent motivation to create effective transnational institutions and to unify the human species. It's hard to see any satisfactory alternative.