Patricia and Michael, in 1952, were the first monkeys to survive a trip to Weightlessville. The macaques’ heart rate and breathing was monitored throughout the flight and appeared to be normal. Biomedical research from this era appears to have been fixated on pulse and respiration. Publicity images from that era invariably show a physician in a white coat and crewcut, holding a stethoscope to a monkey’s narrow chest. That’s all the Albert papers reported on. You couldn’t diagnose much from it—yep, still alive—but this was the limit, circa 1950, of the data you could transmit back from a rocket 30 or 50 or 80 miles up. To rule out any subtler effects of weightlessness, the Air Force would need a subject they could interview: a human. For that, they needed a safer way to go about it.

  It was a team of brothers, Luftwaffe aerospace medicine pioneers Fritz and Heinz Haber, who, in 1950, dreamed up a technique known today as parabolic flight. The Habers theorized that if a pilot flies the same kind of parabolic arc as a suborbital rocket (or a baseball pop fly), then the passengers, for anywhere from 20 to 35 seconds at the top and the downward segments of the arc, will experience weightlessness, just as the monkeys had. If the pilot then pulls out of the downward dive and heads back up and repeats the process, over and over until his fuel runs low, science will have an accumulation of several minutes of weightlessness to work with—at a fraction of the cost of building and launching rockets. These roller-coaster zero-gravity flights are still flown today by space agencies to test equipment or train astronauts or humor authors who have pestered them ceaselessly for months (more on this shortly).

  Here the scene shifts to South America. The Habers had a colleague named Harald von Beckh, who lived in Buenos Aires after the war. Von Beckh knew from the V-2 and Aerobee rocket flights that weightlessness posed no grave threat to survival, but he wondered whether it would disorient a pilot or otherwise compromise his ability to fly a craft. So naturally, von Beckh went out and got some snake-necked turtles. Hydromedusa tectifera are, like post-war Nazis, native to Argentina, Paraguay, and Brazil. These are turtles that hunt like snakes, coiling their overlong necks into an S and then unwinding in bullet-fast strikes that rarely miss. That is what von Beckh planned to test. Would weightlessness put them off their game? It did. The turtles moved “slowly and insecurely” and did not attack a piece of bait placed directly in front of them. Then again, the water in which they swam was repeatedly floating up out of the jar and forming an “ovoid cupola.” Who could eat?

  Von Beckh quickly moved on from turtles to Argentinean pilots. Under the section heading “Experiments with Human Subjects”—a heading that, were I a doctor previously employed by Nazi Germany, I might have rephrased—von Beckh reports on the efforts of the pilots to mark X’s inside small boxes during regular and weightless flight. During weightlessness, many of the letters strayed from the boxes, indicating that pilots might experience difficulties maneuvering their planes and doing crossword puzzles during air battles.

  The following year, von Beckh was recruited by the Aeromedical Research Laboratory at Holloman Air Force Base—home of Dave Simons and Project Albert. Simons was keen to continue his zero-gravity research using the newfangled parabolic flight technique. All he needed was a willing pilot. Only one man volunteered. Joe Kittinger “made a career” out of volunteering. “You can’t get any real fun things unless you volunteer,” says Kittinger in an oral history on file at the New Mexico Museum of Space History. (Kittinger has a unique sense of fun. In 1960, he volunteered to make a parachute jump into the near-airless void 19 miles above the Earth, to test survival equipment for extremely high-altitude bailouts. More on this in chapter 13.)

  Kittinger would take the plane up at a 45-degree angle, and then arc it over and plunge back down, all the while watching a golf ball suspended on a string from the cockpit ceiling. “That was our instrumentation!” Kittinger told me. When the plane achieved zero gravity, the golf ball started floating. So did Kittinger, of course, but he was strapped in his seat. Meanwhile, back behind the cockpit, a Salvador Dali photo had come to life. Von Beckh and Simons were studying, among other things, cats’ ability to right themselves in zero gravity. “The guys would take them and just let them float,” recalled Kittinger. “Here would come a cat and I would push the cat back. A couple of times we had a monkey come floating up to the cockpit. And I would take the monkey and I would push it back.”

  When it became clear that a few seconds of weightlessness was more entertaining than it was troublesome, the aerospace medicine crowd began to apply their boundless nervous energy to the scenario of longer-duration missions. Would an astronaut on a three-or four-day orbit of Earth or a trip to the moon be able to eat, or did he need gravity to help the food along? How would he drink water? Does a straw work in zero gravity? Late in 1958, three captains at the U.S. Air Force School of Aviation Medicine at Randolph Air Force Base in Texas commandeered an F-94C fighter plane and fifteen volunteers and undertook a project to answer these simple questions. Though they were phrased less simply for the journal paper, which came out under the title “Physiologic Response to Subgravity: Mechanics of Nourishment and Deglutition of Solids and Liquids.”

  The captains were not reassured by what they found. New and never-before-encountered dangers presented themselves. Water in a cup became “an amoeboid mass” that would levitate from the cup and “envelop” the face. “The fluid flowed into the…sinuses as the subjects attempted to breathe. Choking—virtually a sense of drowning—was a common occurrence.” Eating was deemed equally perilous. “A number of subjects reported that pieces of food hung suspended in the oropharynx and several reported that bits of food floated up over the soft palate into the nasal passages.” Chewed food, they claimed, was drifting up the esophagus into the mouth, where it “caused the subjects to vomit and feel ill.” I would have assumed that the vomiting was due to the plane’s insane trajectory, or perhaps something having to do with zero gravity’s effect on the vestibular system, but the researchers stuck to their loopy guns and coined a new, utterly nonexistent phenomenon: Weightless Flight Regurgitation Phenomenon.

  Fast-forward five months. The three captains are now majors. They commandeer yet another F-94C and begin “Physiologic Response to Subgravity: Initiation of Micturition.” The concern was legitimate. If you counteract the pull of gravity, will the bladder still empty correctly? Based on their zero-gravity experiences with glasses of water (“exceedingly messy”), the researchers knew better than to have the men urinate into an open container. Using scrap hosing from oxygen masks and small weather balloons, they fashioned enclosed urine receptacles. To make sure everyone needed to go, the subjects were, with characteristic Air Force zeal, told to drink eight glasses of water over the course of the two hours leading up to flight time. Severe discomfort resulted, such that several of the men had to visit the head well before the plane took off. In the end, everything worked fine, and the urine flowed normally.

  Kittinger has a name for the researchers: weenies. “There were scientific papers put out all over the place by the experts that said that [zero gravity] was going to be the limit to putting man into space,” says Kittinger in his oral history. “And I just sat there and laughed my butt off, because I loved it! I thoroughly enjoyed it.”

  You can’t really blame the weenies. You have to put their concerns in the context of the times. Space and zero gravity were uncharted territory where none of the familiar rules could be assumed to apply. Over the course of history, the same sort of anxiety has appeared every time a newer, faster form of transport has come along. “When technical perfection of the steam engine made the development of railways possible, scientists were afraid that the velocity of the trains would exert harmful effects upon the human body.” The quote comes from an aviation medicine text published in 1943. (Locomotives at that time could not exceed fifteen miles per hour.) In the early 1950s, as commercial flights became available, doctors feared that flying might harm the heart and adversely affect the circulation. When
a Dr. John Marbarger showed that it did not, United Airlines gratefully awarded him its Arnold D. Tuttle Award.

  Parabolic flights are still being flown by space agencies, but these days it’s not human beings they’re testing—it’s equipment. Every time NASA develops a new piece of hardware—be it a pump or a heating element or a toilet—someone has to haul it up on a plane out of Ellington Field near Houston to see what sort of problems might develop in zero gravity. Twice a year, something even more problematic gets hauled up there: college students and journalists.

  UNSTOWED

  Escaping Gravity on Board NASA’s C-9

  If you stumbled onto Building 993 at Ellington Field airport, you would have to stop and wonder about the things inside. The sign on the front is as evocative and preposterous as the engraved brass one that says Ministry of Silly Walks in the Monty Python sketch of the same name. This sign says REDUCED GRAVITY OFFICE. I know what is in there, but even so, I have to stand for a moment and indulge my imagination, through which coffeepots are floating and secretaries drift here and there like paper airplanes. Or better still, an organization devoted to the taking of absolutely nothing seriously.

  The real Reduced Gravity Office oversees a program whereby college and high school students compete for the chance to carry out zero-gravity research projects during a parabolic flight on a McDonnell Douglas C-9 military transport jet.* It is run by NASA with, if anything, an excess of gravity.

  I have arrived late for the safety briefing. I am signed on as the journalist for a Missouri University of Science and Technology team that is studying zero-and reduced-gravity welding. (“Reduced-gravity” refers to the situation on, say, the moon, where there is one-sixth as much gravity as on Earth, or Mars, where there’s one-third. It is NASA’s fondest dream to one day be welding on both.)

  The safety lecturer is pointing to the wing of the C-9, now parked in the middle of the hangar where we are meeting. She has long, lank brown hair and wears a maternity blouse. “There are documented instances,” she is saying, “where grown men have been pulled into the engine intake from over six feet away.”† I already know this because it’s in the Participant Handbook. The handbook uses the word ingested, as though the plane had played an active, sinister role in the event.

  Mounted on the wall behind her is a long-handled tool reminiscent of the hooks whalers used to maneuver rafts of blubber alongside the ship. A sign identifies it as a BODY RESCUE HOOK. It is for rescuing someone who is being electrocuted in such a manner that the electricity has contracted his hand muscles, making him grip the very object that is killing him. If you try to pull him away by grabbing his arm, then your hand muscles too will contract, and now you both need rescuing. The pole is nonconductive, enabling the savvy rescuer to save a life without joining the growing conga line of electrocution victims. On this same wall, a hazard sign lists the many things that can trigger accidental discharge of the building’s firefighting foam. (I once saw a video of such an event. It was like Paul Bunyan drawing a bubble bath.) Unsettlingly, “welding” is on this list.

  The dangers go on and on. Hearing protection must be worn on the tarmac. We are not allowed to wear flip-flops or sandals. “Horse-play” is forbidden.

  In my press materials, there’s a photograph of the C-9 powering through the upward climb of the parabolic arch. It is flying at an absurd angle, the way a child moves a toy plane through the air. It seems odd to be talking about the dangers of fire-retarding suds and open-toed shoes rather than the dangers of riding a jet that repeatedly pulls out of a kamikaze dive into a climb so steep that the engines shudder.

  This mix of extremes—workaday paranoia and aeronautic abandon—seems to typify the world of government-funded space travel. NASA’s buildings are plastered with warning signs for the most Tinkerbell dangers. SLIP, TRIP, AND FALL hazard signs are everywhere. Honestly: everywhere. Inside the stalls in the Johnson Space Center cafeteria bathroom, the toilet paper speaks to you from a dialogue bubble printed on the dispenser: “Ladies, don’t drop me on the floor. There, I could become a slip, trip, and fall hazard!” Wet-umbrella bag dispensers are installed at building entrances, courtesy of the Safety Action Team, to keep the floors dry. It’s as though NASA were populated by legions of hopeless pratfalling Mr. Bean types. When a corridor makes a 90-degree turn, a block-letter sign frets, BLIND CORNER: PROCEED WITH CAUTION.

  Perhaps focusing on minor workplace dangers helps space agencies cope with the very major threats they deal with on every mission: explosions, crashes, fire, depressurization. Like war, space is a formidable bogeyman that takes its victims no matter how carefully you what-if the situation. You can’t control the weather or gravity, but you can control the shoes your visitor wears and the amount of water that drips onto the floor from her umbrella.

  To NASA’s credit, a parabolic flight has never gone down. The C-9’s predecessor was the KC-135, one of which is displayed on a steel mount on the lawn outside, 10 feet up and seemingly headed for the commissary. It flew 58,000 parabolas without a “mishap.”* Then again, that’s the sort of thing the astronauts told themselves until the day Space Shuttle Challenger exploded 48,000 feet above the Atlantic.

  It’s 6 P.M. The engineering students have gone to Fuddruckers without me. I pick up some takeout and settle in for an evening of NASA TV. Because I am staying at a hotel across the street from NASA—a hotel that proudly, wordily identifies itself to callers as “Extended Stay America Johnson Space Center”—NASA TV is the first channel that comes on. I adore NASA TV. It’s often just raw feed from cameras on the space station. You’ll tune in to a ten-minute shot of a solar array, immobile in the silence of space, speeding over Africa, the Atlantic, the Amazon. It calms me. I hear people at NASA say they think it’s boring, and there have been efforts to slick it up with graphics and hosted programs, but much of it, thankfully, is essentially undoctored.

  Today the space station astronauts finished hooking up Japan’s new experimental laboratory module, Kibo. After the ribbon-cutting and press conference, there’s footage of them entering the module for the first time. They’re like bulls let into the ring, impelled to movement by the sudden expanse of open space. I’ve watched a lot of NASA TV, and you rarely see this sort of abandon. You’ll see a guy hunched over a circuit board, one toe hooked under a foot restraint, bobbing gently like a boat at anchor. Or you see the crew stacked in two neat rows, facing the camera and fielding press questions. If it weren’t for the floating microphone cord or someone’s gold necklace levitating in front of her chin, you could easily forget they’re weightless.

  My noodles have gone cold because I can’t look away from the TV. One astronaut is spinning horizontally, as though NASA TV had hired one of those guys who do special effects for martial arts movies. Karen Nyberg is banking like a cue ball: wall, ceiling, wall, floor. No one wears shoes, because no one’s soles need to be on the floor, and even if they did, the dust and dirt don’t settle there. The astronaut from Japan, Akihiko Hoshide, is crouched at the opening to the module, waiting for a clear path across the length of it. He pushes off and flies across empty air, arms in front like a superhero. I have done this in dreams. I’m in an enormous old building with 50-foot ceilings and elaborate moldings. I push off from the molding and glide across the room, then bank off the opposing wall and do it again. Whatever the dangers of parabolic flights may be, they do not dampen the anticipated joy of escaping gravity. I go to sleep feeling like a six-year-old on Christmas Eve.

  When I arrive in the morning, my team’s welding experiment has been loaded onto the C-9. From the outside, the plane looks like any large jetliner, but inside it has been gutted. Only six rows of seats remain, in the back. The welding device is an automated arm mounted in a glass-fronted box in a doored cabinet. The cabinet is affixed to a cart, like something a magician wheels around a stage. Two of the students and their supervisor are on their hands and knees, struggling to fit the legs of the cart into brackets mounted on the floor. The meas
urements are off by a fraction of an inch.

  Team member Michelle Rader explains their project. Although much of what the astronauts have been doing on the space station the past decade amounts to zero-gravity construction work, things are typically bolted rather than welded. Sparks and molten metal make NASA nervous. A blob of superheated metal that drifts onto an astronaut’s suit could melt through the layers and cause a leak. An enclosed and/or robotic welder is a possibility, but you first need to be sure that welding in zero gravity doesn’t compromise the strength of the weld. That’s what the Missouri students are testing today.

  A loud crack causes heads to turn. One of the welding students has tried to force a leg into place and now it has broken. The Reduced Gravity Program manager, Dominic Del Rosso, stares at the scrum of students. His head is shaved. His arms are crossed. Do you recall Yul Brynner as the King of Siam? This is him, in a flight suit. Icy and annoyed. “What happened here?”

  A small voice: “We um…”

  Someone else takes over. “A weld broke.”

  The weld team points out that they did not weld the cart legs. These welds were done by someone at Missouri S&T’s metal shop. Someone dials this man’s number on a cell phone. There isn’t anything the man can do for them, other than feel bad, which is probably all they want right now. Del Rosso doesn’t care whose fault it is. He points to the exit. “Take it out of here.”

  Ruh-roh. Have I endured two days of NASA safety orientation briefings for nothing? Is it too late to switch teams? Do I need to start cozying up to Team Analyte Detection Via Protein Nanospores? Back in the hangar, I chat up one of the other Missouri students. He has a minor in explosives and the slightly bitter, misanthropic personality of someone who shouldn’t. I ask him whether his team will still fly if they can’t fix the leg.