At a much earlier period the uterus was double; the excreta were voided through a cloaca; and the eye was protected by a third eyelid or nictitating membrane. At a still earlier period the progenitors of man must have been aquatic in their habits; for morphology plainly tells us that our lungs consist of a modified swim-bladder, which once served as a float. The clefts on the neck in the embryo of man show where the branchiæ once existed. At about this period the true kidneys were replaced by the corpora Wolffiana. The heart existed as a simple pulsating vessel; and the chorda dorsalis took the place of a vertebral column. These early predecessors of man, thus seen in the dim recesses of time, must have been as lowly organised as the lancelet or amphioxus, or even still more lowly organised.
There is one other point deserving a fuller notice. It has long been known that in the vertebrate kingdom one sex bears rudiments of various accessory parts, appertaining to the reproductive system, which properly belong to the opposite sex; and it has now been ascertained that at a very early embryonic period both sexes possess true male and female glands. Hence some extremely remote progenitor of the whole vertebrate kingdom appears to have been hermaphrodite or androgynous.277 But here we encounter a singular 208difficulty. In the mammalian class the males possess in their vesiculæ prostraticæ rudiments of a uterus with the adjacent passage; they bear also rudiments of mammæ, and some male marsupials have rudiments of a marsupial sack.278 Other analogous facts could be added. Are we, then, to suppose that some extremely ancient mammal possessed organs proper to both sexes, that is, continued androgynous after it had acquired the chief distinctions of its proper class, and therefore after it had diverged from the lower classes of the vertebrate kingdom? This seems improbable in the highest degree; for had this been the case, we might have expected that some few members of the two lower classes, namely fishes279 and amphibians, would still have remained androgynous. We must, on the contrary, believe that when the five vertebrate classes diverged from their common progenitor the sexes had already become separated. To account, however, for male mammals possessing rudiments of the accessory female organs, and for female mammals possessing rudiments of the masculine organs, we need not suppose that their early progenitors were still androgynous after they had assumed their chief mammalian characters. It is quite possible that as the one sex gradually acquired the accessory organs proper to it, some of the successive steps or modifications were transmitted to the opposite sex. When we treat of sexual selection, we shall meet with innumerable instances of this form of transmission,—as in the case of the spurs, plumes, 209and brilliant colours, acquired by male birds for battle or ornament, and transferred to the females in an imperfect or rudimentary condition.
The possession by male mammals of functionally imperfect mammary organs is, in some respects, especially curious. The Monotremata have the proper milk-secreting glands with orifices, but no nipples; and as these animals stand at the very base of the mammalian series, it is probable that the progenitors of the class possessed, in like manner, the milk-secreting glands, but no nipples. This conclusion is supported by what is known of their manner of development; for Professor Turner informs me, on the authority of Kölliker and Lauger, that in the embryo the mammary glands can be distinctly traced before the nipples are in the least visible; and it should be borne in mind that the development of successive parts in the individual generally seems to represent and accord with the development of successive beings in the same line of descent. The Marsupials differ from the Monotremata by possessing nipples; so that these organs were probably first acquired by the Marsupials after they had diverged from, and risen above, the Monotremata, and were then transmitted to the placental mammals. No one will suppose that after the Marsupials had approximately acquired their present structure, and therefore at a rather late period in the development of the mammalian series, any of its members still remained androgynous. We seem, therefore, compelled to recur to the foregoing view, and to conclude that the nipples were first developed in the females of some very early marsupial form, and were then, in accordance with a common law of inheritance, transferred in a functionally imperfect condition to the males.
Nevertheless a suspicion has sometimes crossed my210 mind that long after the progenitors of the whole mammalian class had ceased to be androgynous, both sexes might have yielded milk and thus nourished their young; and in the case of the Marsupials, that both sexes might have carried their young in marsupial sacks. This will not appear utterly incredible, if we reflect that the males of syngnathous fishes receive the eggs of the females in their abdominal pouches, hatch them, and afterwards, as some believe, nourish the young;280—that certain other male fishes hatch the eggs within their mouths or branchial cavities;—that certain male toads take the chaplets of eggs from the females and wind them round their own thighs, keeping them there until the tadpoles are born;—that certain male birds undertake the whole duty of incubation, and that male pigeons, as well as the females, feed their nestlings with a secretion from their crops. But the above suspicion first occurred to me from the mammary glands in male mammals being developed so much more perfectly than the rudiments of those other accessory reproductive parts, which are found in the one sex though proper to the other. The mammary glands and nipples, as they exist in male mammals, can indeed hardly be called rudimentary; they are simply not fully developed and not functionally active. They are sympathetically affected under the influence of certain diseases, like the same organs in the female. At birth they often secrete a few drops of milk; and they have 211been known occasionally in man and other mammals to become well developed, and to yield a fair supply of milk. Now if we suppose that during a former prolonged period male mammals aided the females in nursing their offspring, and that afterwards from some cause, as from a smaller number of young being produced, the males ceased giving this aid, disuse of the organs during maturity would lead to their becoming inactive; and from two well-known principles of inheritance this state of inactivity would probably be transmitted to the males at the corresponding age of maturity. But at all earlier ages these organs would be left unaffected, so that they would be equally well developed in the young of both sexes.
Conclusion.—The best definition of advancement or progress in the organic scale ever given, is that by Von Baer; and this rests on the amount of differentiation and specialisation of the several parts of the same being, when arrived, as I should be inclined to add, at maturity. Now as organisms have become slowly adapted by means of natural selection for diversified lines of life, their parts will have become, from the advantage gained by the division of physiological labour, more and more differentiated and specialised for various functions. The same part appears often to have been modified first for one purpose, and then long afterwards for some other and quite distinct purpose; and thus all the parts are rendered more and more complex. But each organism will still retain the general type of structure of the progenitor from which it was aboriginally derived. In accordance with this view it seems, if we turn to geological evidence, that organisation on the whole has advanced throughout the world by slow and interrupted steps. In the great212 kingdom of the Vertebrata it has culminated in man. It must not, however, be supposed that groups of organic beings are always supplanted and disappear as soon as they have given birth to other and more perfect groups. The latter, though victorious over their predecessors, may not have become better adapted for all places in the economy of nature. Some old forms appear to have survived from inhabiting protected sites, where they have not been exposed to very severe competition; and these often aid us in constructing our genealogies, by giving us a fair idea of former and lost populations. But we must not fall into the error of looking at the existing members of any lowly-organised group as perfect representatives of their ancient predecessors.
The most ancient progenitors in the kingdom of the Vertebrata, at which we are able to obtain an obscure glance, apparently consisted of a group of marine animals,281 resembling the larv?
? of existing Ascidians. These animals probably gave rise to a group of fishes, as lowly organised as the lancelet; and from these the Ganoids, and other fishes like the Lepidosiren, must have been developed. From such fish a very small advance would 213carry us on to the amphibians. We have seen that birds and reptiles were once intimately connected together; and the Monotremata now, in a slight degree, connect mammals with reptiles. But no one can at present say by what line of descent the three higher and related classes, namely, mammals, birds, and reptiles, were derived from either of the two lower vertebrate classes, namely amphibians and fishes. In the class of mammals the steps are not difficult to conceive which led from the ancient Monotremata to the ancient Marsupials; and from these to the early progenitors of the placental mammals. We may thus ascend to the Lemuridæ; and the interval is not wide from these to the Simiadæ. The Simiadæ then branched off into two great stems, the New World and Old World monkeys; and from the latter, at a remote period, Man, the wonder and glory of the Universe, proceeded.
Thus we have given to man a pedigree of prodigious length, but not, it may be said, of noble quality. The world, it has often been remarked, appears as if it had long been preparing for the advent of man; and this, in one sense is strictly true, for he owes his birth to a long line of progenitors. If any single link in this chain had never existed, man would not have been exactly what he now is. Unless we wilfully close our eyes, we may, with our present knowledge, approximately recognise our parentage; nor need we feel ashamed of it. The most humble organism is something much higher than the inorganic dust under our feet; and no one with an unbiassed mind can study any living creature, however humble, without being struck with enthusiasm at its marvellous structure and properties.
* * *
214
CHAPTER VII.
On the Races of Man.
The nature and value of specific characters—Application to the races of man—Arguments in favour of, and opposed to, ranking the so-called races of man as distinct species—Sub-species—Monogenists and polygenists—Convergence of character—Numerous points of resemblance in body and mind between the most distinct races of man—The state of man when he first spread over the earth—Each race not descended from a single pair—The extinction of races—The formation of races—The effects of crossing—Slight influence of the direct action of the conditions of life—Slight or no influence of natural selection—Sexual selection.
It is not my intention here to describe the several so-called races of men; but to inquire what is the value of the differences between them under a classificatory point of view, and how they have originated. In determining whether two or more allied forms ought to be ranked as species or varieties, naturalists are practically guided by the following considerations; namely, the amount of difference between them, and whether such differences relate to few or many points of structure, and whether they are of physiological importance; but more especially whether they are constant. Constancy of character is what is chiefly valued and sought for by naturalists. Whenever it can be shewn, or rendered probable, that the forms in question have remained distinct for a long period, this becomes an argument of much weight in favour of treating them as species. Even a slight degree of sterility between any two forms when first crossed, or in their offspring, is generally considered as a decisive215 test of their specific distinctness; and their continued persistence without blending within the same area, is usually accepted as sufficient evidence, either of some degree of mutual sterility, or in the case of animals of some repugnance to mutual pairing.
Independently of blending from intercrossing, the complete absence, in a well-investigated region, of varieties linking together any two closely-allied forms, is probably the most important of all the criterions of their specific distinctness; and this is a somewhat different consideration from mere constancy of character, for two forms may be highly variable and yet not yield intermediate varieties. Geographical distribution is often unconsciously and sometimes consciously brought into play; so that forms living in two widely separated areas, in which most of the other inhabitants are specifically distinct, are themselves usually looked at as distinct; but in truth this affords no aid in distinguishing geographical races from so-called good or true species.
Now let us apply these generally-admitted principles to the races of man, viewing him in the same spirit as a naturalist would any other animal. In regard to the amount of difference between the races, we must make some allowance for our nice powers of discrimination gained by the long habit of observing ourselves. In India, as Elphinstone remarks,282 although a newly-arrived European cannot at first distinguish the various native races, yet they soon appear to him extremely dissimilar; and the Hindoo cannot at first perceive any difference between the several European nations. Even the most distinct races of man, with the exception of certain negro tribes, are much more like each other in form 216than would at first be supposed. This is well shewn by the French photographs in the Collection Anthropologique du Muséum of the men belonging to various races, the greater number of which, as many persons to whom I have shown them have remarked, might pass for Europeans. Nevertheless, these men if seen alive would undoubtedly appear very distinct, so that we are clearly much influenced in our judgment by the mere colour of the skin and hair, by slight differences in the features, and by expression.
There is, however, no doubt that the various races, when carefully compared and measured, differ much from each other,—as in the texture of the hair, the relative proportions of all parts of the body,283 the capacity of the lungs, the form and capacity of the skull, and even in the convolutions of the brain.284 But it would be an endless task to specify the numerous points of structural difference. The races differ also in constitution, in acclimatisation, and in liability to certain diseases. Their mental characteristics are likewise very distinct; chiefly as it would appear in their emotional, but partly in their intellectual, faculties. Every one who has had the opportunity of comparison, must have been struck with the contrast between the taciturn, even morose, aborigines of S. America and the light-hearted, talkative negroes. There is a nearly similar contrast between the Malays and the Papuans,285 who live 217under the same physical conditions, and are separated from each other only by a narrow space of sea.
We will first consider the arguments which may be advanced in favour of classing the races of man as distinct species, and then those on the other side. If a naturalist, who had never before seen such beings, were to compare a Negro, Hottentot, Australian, or Mongolian, he would at once perceive that they differed in a multitude of characters, some of slight and some of considerable importance. On inquiry he would find that they were adapted to live under widely different climates, and that they differed somewhat in bodily constitution and mental disposition. If he were then told that hundreds of similar specimens could be brought from the same countries, he would assuredly declare that they were as good species as many to which he had been in the habit of affixing specific names. This conclusion would be greatly strengthened as soon as he had ascertained that these forms had all retained the same character for many centuries; and that negroes, apparently identical with existing negroes, had lived at least 4000 years ago.286 He would also hear from an excellent observer, 218 Dr. Lund,287 that the human skulls found in the caves of Brazil, entombed with many extinct mammals, belonged to the same type as that now prevailing throughout the American Continent.
Our naturalist would then perhaps turn to geographical distribution, and he would probably declare that forms differing not only in appearance, but fitted for the hottest and dampest or driest countries, as well as for the arctic regions, must be distinct species. He might appeal to the fact that no one species in the group next to man, namely the Quadrumana, can resist a low temperature or any considerable change of climate; and that those species which come nearest to man have never been reared to maturity, even under the temperate climate of Europe. He would be deeply impressed with the fact, f
irst noticed by Agassiz,288 that the different races of man are distributed over the world in the same zoological provinces, as those inhabited by undoubtedly distinct species and genera of mammals. This is manifestly the case with the Australian, Mongolian, and Negro races of man; in a less well-marked manner with the Hottentots; but plainly with the Papuans and Malays, who are separated, as Mr. Wallace has shewn, by nearly the same line which divides the great Malayan and Australian zoological provinces. The aborigines of America range throughout the Continent; and this at first appears opposed to the above rule, for most of the productions of the Southern and Northern halves differ widely; yet some few living forms, as the 219opossum, range from the one into the other, as did formerly some of the gigantic Edentata. The Esquimaux, like other Arctic animals, extend round the whole polar regions. It should be observed that the mammalian forms which inhabit the several zoological provinces, do not differ from each other in the same degree; so that it can hardly be considered as an anomaly that the Negro differs more, and the American much less, from the other races of man than do the mammals of the same continents from those of the other provinces. Man, it may be added, does not appear to have aboriginally inhabited any oceanic island; and in this respect he resembles the other members of his class.