Page 32 of The Descent of Man


  Many Lamellicorns have the power of stridulating, and the organs differ greatly in position. Some species Fig. 25. Hind-leg of Geotrupes stercorarius (from Landois).

  r. Rasp. c. Coxa. f. Femur. t. Tibia. tr. Tarsi. stridulate very loudly, so that when Mr. F. Smith caught a Trox sabulosus, a gamekeeper who stood by thought that he had caught a mouse; but I failed to discover the proper organs in this beetle. In Geotrupes and Typhæus a narrow ridge runs obliquely across (r, fig. 25) the coxa of each hind-leg, having in G. stercorarius 84 ribs, which are scraped by a specially-projecting part of one of the abdominal segments. In the nearly allied Copris lunaris, an excessively narrow fine rasp runs along the sutural margin of the elytra, with another short rasp near the basal outer margin; but in some other Coprini381 the rasp is seated, according to Leconte,499 on the dorsal surface of the abdomen. In Oryctes it is seated on the pro-pygidium, and in some other Dynastini, according to the same entomologist, on the under surface of the elytra. Lastly, Westring states that in Omaloplia brunnea the rasp is placed on the pro-sternum, and the scraper on the meta-sternum, the parts thus occupying the under surface of the body, instead of the upper surface as in the Longicorns.

  We thus see that the stridulating organs in the different coleopterous families are wonderfully diversified in position, but not much in structure. Within the same family some species are provided with these organs, and some are quite destitute of them. This diversity is intelligible, if we suppose that originally various species made a shuffling or hissing noise by the rubbing together of the hard and rough parts of their bodies which were in contact; and that from the noise thus produced being in some way useful, the rough surfaces were gradually developed into regular stridulating organs. Some beetles as they move, now produce, either intentionally or unintentionally, a shuffling noise, without possessing any proper organs for the purpose. Mr. Wallace informs me that the Euchirus longimanus (a Lamellicorn, with the anterior legs wonderfully elongated in the male) “makes, whilst moving, a low hissing sound by the protrusion and contraction of the abdomen; and when seized it produces a grating sound by rubbing its hind-legs against the edges of the elytra.” The hissing sound is clearly due to a narrow rasp running along the sutural margin of each elytron; and I could likewise make the grating 382sound by rubbing the shagreened surface of the femur against the granulated margin of the corresponding elytron; but I could not here detect any proper rasp; nor is it likely that I could have overlooked it in so large an insect. After examining Cychrus and reading what Westring has written in his two papers about this beetle, it seems very doubtful whether it possesses any true rasp, though it has the power of emitting a sound.

  From the analogy of the Orthoptera and Homoptera, I expected to find that the stridulating organs in the Coleoptera differed according to sex; but Landois, who has carefully examined several species, observed no such difference; nor did Westring; nor did Mr. G. R. Crotch in preparing the numerous specimens which he had the kindness to send me for examination. Any slight sexual difference, however, would be difficult to detect, on account of the great variability of these organs. Thus in the first pair of the Necrophorus humator and of the Pelobius which I examined, the rasp was considerably larger in the male than in the female; but not so with succeeding specimens. In Geotrupes stercorarius the rasp appeared to me thicker, opaquer, and more prominent in three males than in the same number of females; consequently my son, Mr. F. Darwin, in order to discover whether the sexes differed in their power of stridulating, collected 57 living specimens, which he separated into two lots, according as they made, when held in the same manner, a greater or lesser noise. He then examined their sexes, but found that the males were very nearly in the same proportion to the females in both lots. Mr. F. Smith has kept alive numerous specimens of Mononychus pseudacori (Curculionidæ), and is satisfied that both sexes stridulate, and apparently in an equal degree.

  Nevertheless the power of stridulating is certainly a383 sexual character in some few Coleoptera. Mr. Crotch has discovered that the males alone of two species of Heliopathes (Tenebrionidæ) possess stridulating organs. I examined five males of H. gibbus, and in all these there was a well-developed rasp, partially divided into two, on the dorsal surface of the terminal abdominal segment; whilst in the same number of females there was not even a rudiment of the rasp, the membrane of this segment being transparent and much thinner than in the male. In H. cribratostriatus the male has a similar rasp, excepting that it is not partially divided into two portions, and the female is completely destitute of this organ; but in addition the male has on the apical margins of the elytra, on each side of the suture, three or four short longitudinal ridges, which are crossed by extremely fine ribs, parallel to and resembling those on the abdominal rasp; whether these ridges serve as an independent rasp, or as a scraper for the abdominal rasp, I could not decide: the female exhibits no trace of this latter structure.

  Again, in three species of the Lamellicorn genus Oryctes, we have a nearly parallel case. In the females of O. gryphus and nasicornis the ribs on the rasp of the pro-pygidium are less continuous and less distinct than in the males; but the chief difference is that the whole upper surface of this segment, when held in the proper light, is seen to be clothed with hairs, which are absent or are represented by excessively fine down in the males. It should be noticed that in all Coleoptera the effective part of the rasp is destitute of hairs. In O. senegalensis the difference between the sexes is more strongly marked, and this is best seen when the proper segment is cleaned and viewed as a transparent object. In the female the whole surface is covered with little separate crests, bearing spines; whilst in the male these crests384 become, in proceeding towards the apex, more and more confluent, regular, and naked; so that three-fourths of the segment is covered with extremely fine parallel ribs, which are quite absent in the female. In the females, however, of all three species of Oryctes, when the abdomen of a softened specimen is pushed backwards and forwards, a slight grating or stridulating sound can be produced.

  In the case of the Heliopathes and Oryctes there can hardly be a doubt that the males stridulate in order to call or to excite the females; but with most beetles the stridulation apparently serves both sexes as a mutual call. This view is not rendered improbable from beetles stridulating under various emotions; we know that birds use their voices for many purposes besides singing to their mates. The great Chiasognathus stridulates in anger or defiance; many species do the same from distress or fear, when held so that they cannot escape; Messrs. Wollaston and Crotch were able, by striking the hollow stems of trees in the Canary Islands, to discover the presence of beetles belonging to the genus Acalles by their stridulation. Lastly the male Ateuchus stridulates to encourage the female in her work, and from distress when she is removed.500 Some naturalists believe that beetles make this noise to frighten away their enemies; but I cannot think that the quadrupeds and birds which are able to devour the larger beetles with their extremely hard coats, would be frightened by so slight a grating sound. The belief that the stridulation serves as a sexual call is supported by the fact that death-ticks (Anobium tesselatum) are well known to answer each other’s ticking, or, as I have 385myself observed, a tapping noise artificially made; and Mr. Doubleday informs me that he has twice or thrice observed a female ticking,501 and in the course of an hour or two has found her united with a male, and on one occasion surrounded by several males. Finally, it seems probable that the two sexes of many kinds of beetles were at first enabled to find each other by the slight shuffling noise produced by the rubbing together of the adjoining parts of their hard bodies; and that as the males or females which made the greatest noise succeeded best in finding partners, the rugosities on various parts of their bodies were gradually developed by means of sexual selection into true stridulating organs.

  * * *

  386

  CHAPTER XI.

  Insects, continued.—Order Lepidoptera.

  Courtship of butterflies—Battles—T
icking noise—Colours common to both sexes, or more brilliant in the males—Examples—Not due to the direct action of the conditions of life—Colours adapted for protection—Colours of moths—Display—Perceptive powers of the Lepidoptera—Variability—Causes of the difference in colour between the males and females—Mimickry, female butterflies more brilliantly coloured than the males—Bright colours of caterpillars—Summary and concluding remarks on the secondary sexual characters of insects—Birds and insects compared.

  In this great Order the most interesting point for us is the difference in colour between the sexes of the same species, and between the distinct species of the same genus. Nearly the whole of the following chapter will be devoted to this subject; but I will first make a few remarks on one or two other points. Several males may often be seen pursuing and crowding round the same female. Their courtship appears to be a prolonged affair, for I have frequently watched one or more males pirouetting round a female until I became tired, without seeing the end of the courtship. Although butterflies are such weak and fragile creatures, they are pugnacious, and an Emperor butterfly502 has been captured with the tips of its wings broken from a conflict with another male. Mr. Collingwood in speaking of the frequent battles 387between the butterflies of Borneo says, “They whirl round each other with the greatest rapidity, and appear to be incited by the greatest ferocity.” One case is known of a butterfly, namely the Ageronia feronia, which makes a noise like that produced by a toothed wheel passing under a spring catch, and which could be heard at the distance of several yards. At Rio de Janeiro this sound was noticed by me, only when two were chasing each other in an irregular course, so that it is probably made during the courtship of the sexes; but I neglected to attend to this point.503

  Every one has admired the extreme beauty of many butterflies and of some moths; and we are led to ask, how has this beauty been acquired? Have their colours and diversified patterns simply resulted from the direct action of the physical conditions to which these insects have been exposed, without any benefit being thus derived? Or have successive variations been accumulated and determined either as a protection or for some unknown purpose, or that one sex might be rendered attractive to the other? And, again, what is the meaning of the colours being widely different in the males and females of certain species, and alike in the two sexes of other species? Before attempting to answer these questions a body of facts must be given.

  With most of our English butterflies, both those which are beautiful, such as the admiral, peacock, and painted lady (Vanessæ), and those which are plain-coloured, such as the meadow-browns (Hipparchiæ), the sexes are alike. This is also the case with the magnificent Heliconidæ and Danaidæ of the tropics. But in certain 388other tropical groups, and with some of our English butterflies, as the purple emperor, orange-tip, &c. (Apatura Iris and Anthocharis cardamines), the sexes differ either greatly or slightly in colour. No language suffices to describe the splendour of the males of some tropical species. Even within the same genus we often find species presenting an extraordinary difference between the sexes, whilst others have their sexes closely alike. Thus in the South American genus Epicalia, Mr. Bates, to whom I am much indebted for most of the following facts and for looking over this whole discussion, informs me that he knows twelve species, the two sexes of which haunt the same stations (and this is not always the case with butterflies), and therefore cannot have been differently affected by external conditions504. In nine of these species the males rank amongst the most brilliant of all butterflies, and differ so greatly from the comparatively plain females that they were formerly placed in distinct genera. The females of these nine species resemble each other in their general type of coloration, and likewise resemble both sexes in several allied genera, found in various parts of the world. Hence in accordance with the descent-theory we may infer that these nine species, and probably all the others of the genus, are descended from an ancestral form which was coloured in nearly the same manner. In the tenth species the female still retains the same general colouring, but the male resembles her, so that he is coloured in a much less gaudy and contrasted manner than the males of the previous species. In the eleventh and twelfth species, the females depart from the type of colouring which 389is usual with their sex in this genus, for they are gaily decorated in nearly the same manner as the males, but in a somewhat less degree. Hence in these two species the bright colours of the males seem to have been transferred to the females; whilst the male of the tenth species has either retained or recovered the plain colours of the female as well as of the parent-form of the genus; the two sexes being thus rendered in both cases, though in an opposite manner, nearly alike. In the allied genus Eubagis, both sexes of some of the species are plain-coloured and nearly alike; whilst with the greater number the males are decorated with beautiful metallic tints, in a diversified manner, and differ much from their females. The females throughout the genus retain the same general style of colouring, so that they commonly resemble each other much more closely than they resemble their own proper males.

  In the genus Papilio, all the species of the Æneas group are remarkable for their conspicuous and strongly contrasted colours, and they illustrate the frequent tendency to gradation in the amount of difference between the sexes. In a few species, for instance in P. ascanius, the males and females are alike; in others the males are a little or very much more superbly coloured than the females. The genus Junonia allied to our Vanessæ offers a nearly parallel case, for although the sexes of most of the species resemble each other and are destitute of rich colours, yet in certain species, as in J. œnone, the male is rather more brightly coloured than the female, and in a few (for instance J. andremiaja) the male is so different from the female that he might be mistaken for an entirely distinct species.

  Another striking case was pointed out to me in the British museum by Mr. A. Butler, namely one of the Tropical American Theclæ, in which both sexes390 are nearly alike and wonderfully splendid; in another, the male is coloured in a similarly gorgeous manner, whilst the whole upper surface of the female is of a dull uniform brown. Our common little English blue butterflies of the genus Lycæna, illustrate the various differences in colour between the sexes, almost as well, though not in so striking a manner, as the above exotic genera. In Lycæna agestis both sexes have wings of a brown colour, bordered with small ocellated orange spots, and are consequently alike. In L. œgon the wings of the male are of a fine blue, bordered with black; whilst the wings of the female are brown, with a similar border, and closely resemble those of L. agestis. Lastly, in L. arion both sexes are of a blue colour and nearly alike, though in the female the edges of the wings are rather duskier, with the black spots plainer; and in a bright blue Indian species both sexes are still more closely alike.

  I have given the foregoing cases in some detail in order to shew, in the first place, that when the sexes of butterflies differ, the male as a general rule is the most beautiful, and departs most from the usual type of colouring of the group to which the species belongs. Hence in most groups the females of the several species resemble each other much more closely than do the males. In some exceptional cases, however, to which I shall hereafter allude, the females are coloured more splendidly than the males. In the second place these cases have been given to bring clearly before the mind that within the same genus, the two sexes frequently present every gradation from no difference in colour to so great a difference that it was long before the two were placed by entomologists in the same genus. In the third place, we have seen that when the sexes nearly resemble each other, this apparently may be due either to the391 male having transferred his colours to the female, or to the male having retained, or perhaps recovered, the primordial colours of the genus to which the species belongs. It also deserves notice that in those groups in which the sexes present any difference of colour, the females usually resemble the males to a certain extent, so that when the males are beautiful to an extraordinary degree, the females almost in
variably exhibit some degree of beauty. From the numerous cases of gradation in the amount of difference between the sexes, and from the prevalence of the same general type of coloration throughout the whole of the same group, we may conclude that the causes, whatever they may be, which have determined the brilliant colouring of the males alone of some species, and of both sexes in a more or less equal degree of other species, have generally been the same.

  As so many gorgeous butterflies inhabit the tropics, it has often been supposed that they owe their colours to the great heat and moisture of these zones; but Mr. Bates505 has shewn by the comparison of various closely-allied groups of insects from the temperate and tropical regions, that this view cannot be maintained; and the evidence becomes conclusive when brilliantly-coloured males and plain-coloured females of the same species inhabit the same district, feed on the same food, and follow exactly the same habits of life. Even when the sexes resemble each other, we can hardly believe that their brilliant and beautifully-arranged colours are the purposeless result of the nature of the tissues, and the action of the surrounding conditions.