Page 19 of The Age of Wonder


  It was clear what would happen next. Either the Montgolfiers or Charles would try to send a man up in a balloon. The prospect was amazing, and nothing else was talked about in France. Franklin thought that balloons might eventually ‘pave the way to some discoveries in Natural Philosophy of which at present we have no conception’. He instanced the examples of ‘magnetism and electricity, of which the first experiments were mere matters of amusement’.2

  Initially Banks wrote back sceptically. ‘I see an inclination in the more respectable part of the Royal Society to guard against the Ballomania until some experiment like to prove beneficial either to society or science is proposed.’ Nevertheless, he conceded by mid-September 1783 that with the Montgolfiers’ Aerostatic Experiment’ at Versailles, the French had ‘opened a Road in the Air’, and this might mark a new ‘Epoch’. If further experiments proved successful, then ‘The immediate Effect it will have upon the Concerns of Mankind [will be] greater than anything since the invention of Shipping.’3

  Paradoxically enough, Banks’s first conception of balloon transportation was a thoroughly earthbound one. He saw the balloon as ‘a counterpoise to Absolute Gravity’: that is, as a flotation device to be attached to traditional forms of coach or cart, making them lighter and easier to move over the ground. So ‘a broad-wheeled wagon’ normally requiring eight horses to pull it might need only two horses with a Montgolfier attached. This aptly suggests how difficult it was, even for a trained scientific mind like Banks’s, to imagine the true possibilities of flight in these early days.4

  2

  Banks was very conscious that the discovery of a lighter-than-air gas had actually been achieved by two English chemists, Henry Cavendish and Joseph Priestley. They had called it ‘inflammable air’ because of its lightness and explosive properties. Priestley’s Experiments on Different Kinds of Air had been translated in France in 1768. All the experiments had then been repeated and refined by their rival, the great French chemist Antoine Lavoisier, in Paris. He had measured the buoyancy of this ‘gaz’ (a word not yet coined in English) more accurately, and renamed it ‘hydrogen’. But no one had manufactured it on a large scale, or realised its dramatic practical applications.

  The Montgolfier brothers were commercial paper manufacturers from Annonay, near Lyons, in the Ardèche. They were an effective business team. Joseph was the shrewd entrepreneur, and Étienne was the madcap inventor. They were interested in chemistry for commercial reasons. They had followed Priestley’s and Lavoisier’s work, and had speculated about putting lighter-than-air gas into paper containers. As early as 1782, Joseph had humorously suggested the theoretical possibility of flying an entire French army into Gibraltar, and seizing it from the English. The troops would fly suspended beneath hundreds of huge paper bags.5

  Lavoisier’s ‘hydrogen’ was produced by passing sulphuric acid over iron filings. It was one-thirteenth of the weight of common air, and consequently could produce a powerful lift if sufficiently concentrated in a light container (Cavendish had used soap bubbles). But it was slow and dangerous to produce, potentially explosive, and easily escaped from containers made of silk or animal bladders. Hot air, on the other hand, was easily produced by any kind of controlled fire, and could be temporarily contained in inflated silk or paper. It produced a short-term lift, as heat agitates the air molecules, making them move apart and become more buoyant than the surrounding cooler, denser air (and at best about half its weight). This lift was however less powerful than that of hydrogen, was easily dissipated, and consequently required much bigger balloons to sustain the same power of ascent, or carry the same payload.

  Joseph Montgolfier later said he had tried Lavoisier’s ‘gaz’ unsuccessfully, but discovered the principle of hot air by watching his wife’s chemise inflating when she hung it over the hearth to dry.6 He made several small experimental ‘aerostats’, finally adopting a pear-shaped balloon, with a wide neck that could be lowered over a fire. The Montgolfiers described it memorably as ‘putting a cloud in a paper bag’.

  On 5 June 1783, they successfully launched their first large paper balloon in open country outside Annonay. It was probably intended as a piece of advertising for their paper business, and it was a dazzling sight. When inflated, their balloon stood thirty foot high, 110 feet in circumference, and took eight men to hold it down. It was crudely constructed of painted silk sections backed with coarse paper and simply buttoned together. In fact it contained no hydrogen gas at all, but simply 22,000 cubic feet of hot air collected from braziers burning straw and damp wool. French hot air proved to have enormous lifting power. When released it rose gracefully to an estimated 6,000 feet, barely visible, and remained aloft for ten minutes.7

  Perhaps most significant of all, it drew an enormous crowd of onlookers. This ability of the balloon to attract attention and pull large numbers of people has always remained part of its mystique, and an important part of its history. Montgolfier had discovered a scientific principle quite as interesting as that of aerial buoyancy. With ballooning, science had found a powerful new formula: chemistry plus showmanship equalled crowds plus wonder plus money. Reports of the flight travelled throughout France, and the Montgolfiers were soon invited to give official demonstrations, first at Versailles and then in Paris. The Marquis de Condorcet, the head of the Académie des Sciences, appointed a committee to investigate the invention and consider sponsoring its development. It assembled France’s leading men of science, including Lavoisier and Claude Berthollet.8

  Now there was the feeling of urgency, even of a race. People began contacting the Montgolfiers, applying to the Académie, or publicly volunteering to be ‘the first aerial traveller in the world’. One was a young inventor from Normandy, Jean-Pierre Blanchard, who had already been experimenting with a number of winged flying machines, most notably a flying tricycle. He announced boldly in the Journal de Paris: ‘Within a very few days I shall be ready to demonstrate my own aerostatic machine, which will climb and dive on command, and fly in a straight line at a constant altitude. I shall be at the controls myself, and have sufficient confidence in my design to have no fear of repeating the fate of Icarus.’9

  Another, better-connected but no less enthusiastic candidate, was a young Parisian doctor, Jean-François Pilâtre de Rozier. Pilâtre was a professor of natural philosophy who ran a private science museum and college in the rue Saint-Honoré. He was twenty-nine years old. He had invented a gasmask, a hydrogen blowtorch, and a new theory of thunder — all of which seemed equally relevant to ballooning. A small, neat, energetic figure of infectious charm, he was a considerable ladies’ man. He had good contacts within the Académie des Sciences and the Ministry of Finance, and some said particularly with ‘Madame’ (the Comtesse de Provence, Louis XVI’s sister-in-law). He would soon be pursued by a number of intellectual aristocrats, such as Madame de Saint-Hilaire. But with his charm went extraordinary sangfroid– and of course a head for heights. Pilâtre proved himself fearless and precise during the most alarming experiments, and soon made himself indispensable to the Montgolfiers. He had, in effect, invented the new profession of test pilot. He had the right stuff.10

  On 21 November 1783 the first manned Montgolfier balloon was launched from the hill of La Muette. This was a commanding site just above the river Seine at Passy, opposite the Champs de Mars (where the Eiffel Tower now stands). The hot-air balloon was enormous, a monster: seventy feet high, and gloriously decorated in blue, with golden mythological figures. It was powered by a six-foot open brazier burning straw. Its chosen ‘aeronauts’ — another new French term — were Pilâtre de Rozier and an elegant infantry officer, the Marquis d’Arlandes, a major in the Garde Royale. D’Arlandes was selected for his court connections, his enthusiasm and his wealth; and also simply because the Montgolfiers needed a ‘counterweight’. Since Pilâtre was to be carried aloft in a circular gallery slung around the open neck of the balloon (and not in a basket), his weight had to be constantly balanced by a second aeronaut on the
opposite side. D’Arlandes became therefore, by default, the first co-pilot as well as the first aerial stoker.

  D’Arlandes subsequently published a laconic account of their historic voyage, which took them low over Paris for about twenty-seven minutes. The Montgolfier (as the balloon was now known) initially rose to some 900 feet, drifted across the Seine, and then began a series of slow swoops across the rooftops of Saint-Germain, narrowly missing the towers of Saint-Sulpice, rising again over the wooded parkland of the Luxembourg, and finally sinking rapidly onto the Buttes aux Cailles (near the present Place d’Italie in the 13th arrondissement), narrowly missing two windmills.

  Because of the circular structure of the gallery, with the neck of the balloon (and the brazier) in the centre, the aeronauts could barely see each other during the flight. This produced a kind of black comedy which was to become familiar in later ascents. Pilâtre spent much of his time calling to the invisible d’Arlandes to stop admiring the view of Paris and stoke the brazier. ‘Let’s work, let’s work! — If you keep gaping at the Seine, we’ll be swimming in it soon.’

  In fact d’Arlandes seems to have been increasingly (and not unnaturally) overcome by nerves. First he thought the balloon was on fire, then that the canopy was separating from the gallery, and finally that one after another the balloon cords were breaking. He constantly shouted back at the unseen Pilâtre, ‘We must land now! We must land now!’ When the whole balloon shook with a sudden gust of wind above Les Invalides, d’Arlandes screamed at Pilâtre: ‘What are you doing! Stop dancing!’

  Characteristically, Pilâtre ignored these protests, and calmly went on telling d’Arlandes to work at feeding the brazier. He himself took off his bright green topcoat (put on for the crowd), rolled up his sleeves, and went on throwing on straw till his wooden fork broke. Once, when d’Arlandes was desperately shouting at him, ‘We must go down! We must go down!’, Pilâtre called back soothingly: ‘Look d’Arlandes. Here we are above Paris. There’s no possible danger for you. Are you taking this all in?’ Many witnesses later said that they could hear the two men shouting excitedly to each other as they passed overhead. They assumed they were describing the glories of flight.

  Nonetheless, it was d’Arlandes who had the courage and honesty to record all these exchanges, and to describe his companion, in a phrase that became celebrated, as ‘l’intrépide Pilâtre, qui ne perd point la tête’ — the intrepid Pilâtre, who never loses his head. When they landed, d’Arlandes vaulted out of the circular gallery, expecting the huge collapsing canopy to burst into flames at any moment. As he ran anxiously round the outside of the balloon, he found Pilâtre standing quietly contemplating the great gold and blue dome as it finally settled back to earth. ‘We had enough fuel to fly for an hour,’ was all he said. Pilâtre was holding their basket of provisions, with his green topcoat neatly folded and placed on top. A few moments later a wild, cheering crowd of le petit peuple de Paris (not yet citoyens) gathered round them. Pilâtre handed them the basket of provisions to celebrate, but they also seized the green topcoat, and tore it into little pieces as souvenirs.11

  3

  This was all very picturesque, and is the ‘first flight’ that has gone down in the history books. But in fact the Montgolfier was a crude and virtually uncontrollable monster. A far more significant ascent followed just ten days later, when Dr Alexandre Charles made the first ascent in a true hydrogen balloon.

  Charles pioneered a number of technical breakthroughs. They included an elongated wickerwork basket safely suspended on ropes beneath the canopy; an impermeable balloon skin made of silk coated in rubber and enclosed in netting; a controllable gas-valve at the top of the balloon for venting; and, most important of all, a finely tuned system of ballast bags filled with sand which could be jettisoned by the kilo or by the gram, precisely as required by the aeronaut. Dr Charles had in effect invented nearly all the features of the modern gas balloon in a single brilliant design.

  He launched from the Tuileries Gardens in Paris on 1 December 1783, with a scientific assistant, M. Robert. They attracted what has been estimated as the biggest crowd in pre-Revolutionary Paris, upwards of 400,000 people, about half the total population of the city.12 It was a glorious pink-and-yellow, candy-coloured balloon, thirty feet tall, and the crowd loved it. The wickerwork basket, a sort of chaise longue for two, was completely festooned with flags and bunting. Dr Charles had a full payload of scientific equipment aboard — mercury barometer (which was used as an early form of altimeter), thermometer, telescope, sandbags and several bottles of champagne. In a nice gesture, he handed the release cord to Joseph Montgolfier: ‘Monsieur Montgolfier, it is for you to show us the way to the skies!’

  Dr Charles later recalled his feelings as the balloon lifted above the trees of the Tuileries and across the Seine. ‘Nothing will ever quite equal that moment of total hilarity that filled my whole body at the moment of take-off. I felt we were flying away from the Earth and all its troubles for ever. It was not mere delight. It was a sort of physical ecstasy. My companion Monsieur Robert murmured to me — I’m finished with the Earth. From now on it’s the sky for me! Such utter calm. Such immensity!’13 Benjamin Franklin, American Ambassador in Paris, watched the launch through a telescope from the window of his carriage. Afterwards he remarked: ‘Someone asked me — what’s the use of a balloon? I replied – what’s the use of a newborn baby?’

  Two hours later they landed twenty-seven miles away at Nesle, skimming across a field and chased by a group of farm workers, ‘like children chasing a butterfly’. Once the balloon was secured, in a moment of euphoria Dr Charles asked M. Robert to step out of the basket. Released of his weight, and with Charles alone aboard, the balloon rapidly relaunched and climbed into the sunset, reaching the astonishing height of 10,000 feet in a mere ten minutes. One thousand feet per minute: a truly formidable and terrifying ascent. Dr Charles kept calmly observing his instruments, and making notes until his hand was too cold to grasp the pen. ‘I was the first man ever to see the sun set twice in the same day. The cold was intense and dry, but supportable. I had acute pain in my right ear and jaw. But I examined all my sensations calmly. I could hear myself living, so to speak.’

  He began gently to release the hydrogen gas-valve. Within thirty-five minutes he was safely back on terra firma – a term that took on new meaning — alighting a mere three miles from his first landing point. His ascent had been almost vertical. It was the first solo flight in history. ‘Never has a man felt so solitary, so sublime,– and so utterly terrified.’ Dr Charles never flew again.14

  Public excitement was huge in France that winter. The Musée de l’Air now at Le Bourget has many display cabinets of balloon memorabilia: plates, cups, clocks, ivory draughts pieces, snuffboxes, bracelets, tobacco pipes, hairclips, tiepins, even a porcelain bidet with a balloon design painted on the interior carrying a flag marked ‘adieu’. Many sexually suggestive cartoons soon appeared: the inevitable balloon-breasted girls lifted off their feet, monstrous aeronauts inflated by gas enemas, or ‘inflammable’ women carrying men off into the clouds.15

  The science writers Faujas de Saint-Fond and David Bourgeois both published handbooks to the science of flight in 1784. Bourgeois opened ecstatically: ‘The idea of taking to the air, of flying through sky, and navigating through the ether, has always appealed so strongly to mankind, that it has appeared in numerous classical legends and folktales from the remotest antiquity. The wings of Saturn, the eagle of Jupiter, the peacocks of Juno, the doves of Venus, the winged horses of the Sun all bear witness …’ He did not mention Icarus.16 His list of the innumerable benefits of ballooning included weather prediction, telescope observation of the stars, geographical exploration (‘he will cross burning deserts, inaccessible mountains, impenetrable forests, and raging torrents’), military reconnaissance and heavy cargo carrying.17

  All sorts of ingenious theories about how a balloon might be steered were also proposed: by enormous oars, by wings, by hand-cranke
d propellers, spinning ‘moulinets’, silk-covered paddles, and even giant bellows.

  4

  In England, George III formally wrote to the Royal Society asking if research into ‘air-globes’ should be sponsored by the British Crown, or left to private individuals. An enterprising Swiss chemist, Aimé Argand, had released an eighteen-inch hydrogen balloon from the terrace at Windsor Castle on 26 November 1783, first getting the King himself to hold the string and feel the tug. Intrigued, George offered to put up money from his own funds to finance some early experiments.18 He received a cautious reply from Sir Joseph Banks, who still felt that there was inadequate experimental evidence for balloons’ utility. The French, he seemed to imply, were always inclined to mistake novelty for real science.19 This reaction was very unlike that of the French Académie des Sciences, who were determined to sponsor Pilâtre de Rozier in further ascents and larger balloons, seeing all sorts of possibilities, both commercial and military.

  In fact Banks could see the revolutionary nature of the science, but still doubted the technological application. A week after he had received reports of Dr Charles’s spectacular demonstration of the first hydrogen balloon, he wrote privately to Franklin in Paris. ‘Dr Charles’s experiment seems decisive … Practical Flying we must allow to our rivals. Theoretical Flying we claim ourselves … Mr Cavendish when he blew soap bubbles of his Inflammable air, evidently performed the [same] experiment which carried Dr Charles on [his] memorable flight.’ Banks thought that when the French — ‘our Friends on your side of the water’ — had ‘cooled a little’ in their naïve enthusiasm for ballooning, they would realise what advances the English were making in the penetration of the skies through another method — astronomy. Astronomy promised a far greater knowledge of ‘the repositories of stars and meteors’. Franklin — ‘the old fox’ — must have thought this an oddly evasive response; but then he did not know Herschel’s plans for the giant forty-foot telescope, whereas Banks did.20