Page 45 of The Age of Wonder


  The Lamia poem is the one in which Keats himself said he had made ‘more use of my judgement’ — meaning his powers of intellectual analysis – than any other. It is in fact full of intellectual provocations — not least about the nature of sexual attraction, and the indiscriminate drive of the life force — and is replete with chemical and surgical imagery. There is another passage, far less known, in which Keats describes the Lamia herself, before she is transformed into a woman. Here she is presented not as some conventional erotic anaconda (as Humboldt might have encountered in the Amazon forest), but as if she were the result of some astonishing new chemical or biological combination, producing a gleaming, seductive but utterly alien new life form.

  She was a gordian shape of dazzling hue,

  Vermilion-spotted, golden, green and blue;

  Striped like a zebra, freckled like a pard,

  Eyed like a peacock, and all crimson barred;

  And full of silver moons, that, as she breathed,

  Dissolved, or brighter shone, or interwreathed

  Their lustres with the gloomier tapestries –

  So rainbow-sided, touched with miseries

  She seemed …

  Her head was serpent, but, ah bitter-sweet!

  She had a woman’s mouth with all its pearls complete.40

  This extraordinary creation is both sexually alluring and yet clearly menacing and ‘demonic’. By using the term ‘rainbow-sided’ of her body, Keats even seems to be recalling his old Newtonian joke, and inventing his own mysterious biological rainbow, a living creature who is both a spectre and a spectrum. There are many other passages which play with medical and scientific imagery in the poem — for example Hunter’s theory of ‘inflammation’ as proof of vitality. When Lycius desperately grasps Lamia’s chilly hand, ‘all the pains/Of an unnatural heat shot to his heart’.41 But most memorable and disturbing is the passage in which Lamia the snake changes into Lamia the woman, ‘a full-born beauty new and exquisite!’ This new birth is described in semi-scientific terms, as if Keats were observing a violent chemical experiment in a laboratory, or a surgical procedure (like Fanny Burney’s), or one of Aldini’s electrical trials. It is agonising. Lamia’s serpentine body begins to convulse, her blood ‘in madness’ runs through her length; she foams at the mouth, and her saliva ‘so sweet and virulent’ burns and ‘withers’ the ground where it spatters. Her eyes ‘in torture fixed’ become glazed and wide. The ‘lid-lashes’ are seared, and the pupils flash ‘phosphor and sharp sparks’.

  The colours all inflamed throughout her train,

  She writhed about convulsed in scarlet pain:

  A deep volcanian yellow took the place

  Of her milder-moonèd body’s grace;

  And as the lava ravishes the mead,

  Spoilt all her silver mail, and golden brede;

  Made gloom of all her frecklings, streaks and bars,

  Eclipsed her crescents, and licked up her stars … 42

  Keats never lets his reader forget this traumatic birth, and what it has cost the serpent to become a human being. His extraordinary invention, perhaps the most brilliant and thought-provoking of all his narrative poems, engages many of the moral issues surrounding Vitalism, the nature of life, and the notion of human consciousness. Above all, perhaps, it asks if the beautiful Lamia has a soul.

  4

  But the most singular literary response to the Vitalism debate was Mary Shelley’s cult novel Frankenstein, or The Modern Prometheus (1818). In this story, originally thought to have been written by a male author – either Walter Scott, William Godwin or Percy Shelley — a sort of human life is physically created, or rather reconstructed. But the soul or spirit is irretrievably damaged.

  Mary Shelley’s preliminary ideas for the novel can be dated back remarkably early, to the year 1812, when her father William Godwin took her to hear Humphry Davy give his public lectures on chemistry at the Royal Institution. She was then only fourteen. Her young Victor Frankenstein would also begin as an idealistic and dedicated medical student, inspired by the lectures of the visionary Professor Waldman at Ingolstadt. Mary Shelley would eventually draw directly on the published text of Davy’s famous ‘Introductory Discourse’, in which he spoke of those future experiments in which man would ‘interrogate Nature with Power … as a master, active, with his own instruments’.43

  Waldman’s lecture on chemistry expands Davy’s claims, and has an electric effect on the young Victor Frankenstein.

  ‘The ancient teachers of this science,’ said he, ‘promised impossibilities and performed nothing. The modern masters promise very little; they know that metals cannot be transmuted, and that the elixir of life is a chimera. But these philosophers, whose hands seem only to dabble in dirt, and their eyes to pore over the microscope or crucible, have indeed performed miracles. They penetrate into the recesses of Nature, and show how she works in her hiding-places. They ascend into the heavens; they have discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and almost unlimited Powers: they can command the thunders of heaven, mimic the earthquake, and even mock the invisible world with its own shadow.’

  Such were the Professor’s words — rather let me say such the words of Fate — enounced to destroy me. As he went on I felt as if my soul were grappling with a palpable enemy; one by one the various keys were touched which formed the mechanism of my being. Chord after chord was sounded, and soon my mind was filled with one thought, one conception, one purpose. So much has been done! — exclaimed the soul of Frankenstein: more, far more will I achieve! Treading in the steps already marked, I will pioneer a new way, explore unknown Powers, and unfold to the world the deepest mysteries of Creation.44

  When Mary eloped with Shelley to France and Switzerland in 1814, their shared journal indicates that they were already discussing notions of creating artificial life. As they returned penniless, by public riverboat down the Rhine, they remarked on the monstrous, inhuman appearance of several of the huge German labourers on board, and noticed that they sailed beneath a lowering schloss known as ‘Castle Frankenstein’.45 On their return Shelley began writing the first of his series of speculative and autobiographical essays, mixing scientific ideas with psychology, under such titles as ‘On the Science of Mind’, ‘On a Catalogue of the Phenomenon of Dreams’ and ‘On Life’. He evidently discussed these disturbing ideas with Mary, for she remembered on one occasion how he broke off from writing one of them, ‘overcome by thrilling horror’.46

  Mary’s brilliance was to see that these weighty and often alarming ideas could be given highly suggestive, imaginative and even playful form. In a sense, she would treat male concepts in a female style. She would develop exactly what William Lawrence had dismissed in his lectures as a ‘hypothesis or fiction’. Indeed, it was to be an utterly new form of fiction — the science fiction novel. Mary plunged instinctively into the most extreme implications of Vitalism. In effect, she would take up where Aldini had been forced to leave off. She would pursue the controversial — and possibly blasphemous – idea that vitality, like electricity, might be used to reanimate a dead human being. But she would go further, much further. She would imagine an experiment in which an entirely new human being was ‘created’ from dead matter. She would imagine a surgical operation, a corpse dissection, in reverse. She would invent a laboratory in which limbs, organs, assorted body parts were not separated and removed and thrown away, but assembled and sewn together and ‘reanimated’ by a ‘powerful machine’, presumably a voltaic battery.47 Thus they would be given organic life and vitality. But whether they would be given a soul as well was another question.

  This extraordinary fiction was begun at the Villa Diodati on Lake Geneva in the summer of 1816, in a holiday atmosphere of dinner parties and late-night talk, but very different from that at Haydon’s ‘Immortal Dinner’. The talk was quick, clever, sceptical, teasing and flirtatious. Mary Shelley records that she, Shelley and Byron, inspired by
Dr Polidori (himself only twenty-two), discussed the galvanic experiments of Aldini, and various speculations about the artificial generation of life by Erasmus Darwin. They then, famously, set themselves a ghost-story-writing competition.

  Byron scrawled a fragment about a dying explorer, ‘Augustus Darvell’ (dated 17 June 1816); Shelley composed his atheist poem ‘Mont Blanc’; Polidori dashed off a brief gothic bagatelle, ‘The Vampyre’, which he later tried to pretend was actually Byron’s (so he could sell it), while Mary Shelley wrote — but very slowly, over the next fourteen months — an intricately constructed 90,000-word fiction, which gradually became, draft crafted upon draft, Frankenstein, or The Modern Prometheus. She handed in the completed manuscript to Lackington, Allen & Co. in August 1817, just three weeks before her baby Clara was born on 2 September.

  The actual writing of Mary’s novel can be followed fairly closely from her journal in Switzerland, and then back in England at Great Marlow on the Thames. What is less clear is where she gathered her ideas and materials from, and how she created her two unforgettable protagonists: Dr Frankenstein and his Creature. One is tempted to say that the Creature – who is paradoxically the most articulate person in the whole novel — was a pure invention of Mary’s genius. But in Victor Frankenstein of Ingolstadt she had created a composite figure who in many ways was typical of a whole generation of scientific men. The shades of ‘inflammable’ Priestley, the deeply eccentric Cavendish, the ambitious young Davy, the sinister Aldini and the glamorous, iconoclastic William Lawrence may all have contributed something to the portrait.

  Yet Frankenstein is essentially a European figure, a Genevan — perhaps of German Jewish ancestry — studying and working at Ingolstadt in Germany.48 The importance of the German connection, and the experiments already done there, was pointed out by Percy Shelley in the very first sentence of his anonymous ‘Preface’ to the original 1818 edition of the novel. ‘The event on which this fiction is founded, has been supposed, by Dr Darwin, and some of the physiological writers of Germany, as not impossible of occurrence.’

  So who had Mary Shelley been thinking of? The outstanding young German physiologist known in British scientific circles at this time was Johann Wilhelm Ritter (1776-1810). His work at the university of Jena had been reported to Banks regularly at the turn of the century, and his election and move to the Bavarian Academy of Sciences in Munich in 1804, when still only twenty-eight, was closely followed.49 Banks and Davy kept a particularly keen eye on his work, since Ritter had anticipated Davy’s improvements on the voltaic battery, had invented a dry-cell storage battery, and had followed up Herschel’s work on infra-red radiation from the sun, by identifying ultraviolet rays in 1803. He was also known for certain undefined ‘galvanic’ experiments with animals, which were the talk of the Royal Society, although amidst a certain amount of head-shaking.50 But among his colleagues at Jena he was regarded as a portent. The young poet Novalis (Frederick von Hardenburg, also a mining engineer) exclaimed: ‘Ritter is indeed searching for the real Soul of the World in Nature! He wants to decipher her visible and tangible language, and explain the emergence of the Higher Spiritual Forces.’51

  In September 1803 Banks received a confidential report from the chemist Richard Chenevix, a Fellow of the Royal Society and the recipient of the Copley Medal in 1803, who was on a scientific tour of German cities. Writing from Leipzig, Chenevix noted that the ‘most interesting’ work at Jena was being done by Ritter, who was using a huge voltaic battery to obtain ‘most capital results’, having ‘a very powerful effect upon the animal economy’ but without damaging ‘the most delicate organs’. Apparently holding back further details for a separate paper, Chenevix added to Banks: ‘In communicating these experiments to you who are at the centre, they will immediately find their way to other Philosophers of London. Mr Davy I am sure will be particularly interested.’52

  But by August of the following year, when Ritter had moved to Munich, Chenevix’s reports had taken on a rather different tone. ‘Ritter the galvanist is the only man of real talent I have met with; and his head and morals are overturned by the new philosophy of Schelling. I have declared open war against these absurdities.’53 Chenevix’s final report, of 7 November 1804, while still praising Ritter, now has an openly sarcastic edge, and ends on a disturbing note, as if he had witnessed something terrible which he cannot quite bring himself to describe: ‘You may remember that I mentioned to you Ritter’s experiments with a Galvanic pile … Ritter is experimenter in chief, or as they term him, Empyrie of the New Transcendent School. I saw him repeat his experiments; and they appeared most convincing. Whether there was any trick in them or not I cannot pretend to say … Ritter with a large body of Professors and pupils, is gone from Jena; and Bavaria is now enlightened by their Doctrines. It is impossible to conceive anything so disgusting and humiliating for the human understanding as their dreams.’54

  That these ‘dreams’ are related to those of the fictional Dr Frankenstein seems more than possible. Experiments that had been forbidden by the Prussian government in Jena were taken up again when Ritter moved to the traditionally more libertarian atmosphere of Munich. From his desultory and posthumous memoirs, Fragments of a Young Physicist (1810), it would seem that in Munich Ritter fell fatally under the influence of one of the wildest of the Naturphilosophie practitioners, a certain Franz von Baader. Experiments that began with water divining, ‘geoelectrical’ mapping and ‘metal witching’ turned to the revival of dead animals by electrical action, and possibly the ‘disgusting and humiliating’ revival of dead human beings, although there is no definitive evidence of this. At all events, Ritter’s Bavarian colleagues were gradually alienated, his students abandoned him, and his mental stability became increasingly fragile. He neglected his family (he had three children), withdrew into his laboratory, and grew increasingly remote and obsessive. Finally, his promising career was destroyed, and he died penniless and insane in 1810, aged thirty-three. In other circumstances his Memoirs might have been those of young Victor Frankenstein.55

  Ritter’s tragic story was clearly known to Banks, to Davy, and very probably to Lawrence after his time in Göttingen with Blumenbach. Whether it was known to Dr Polidori, and whether it was he who told it to the Shelleys in 1816, is speculation. But they clearly knew from some source about ‘the physiological writers of Germany’. Moreover, the novel owes something else to Germany. Mary Shelley chose to narrate Frankenstein’s act of electrical reanimation, or blasphemous ‘creation’, in a gothic style that owes nothing to the cool British manner of the Royal Society reports, but everything to German ballads and folk tales.

  It was on a dreary night of November, that I beheld the accomplishment of my toils. With an anxiety that almost amounted to agony, I collected the instruments of life around me, that I might infuse a spark of being into the lifeless thing that lay at my feet. It was already one in the morning; the rain pattered dismally against the panes, and my candle was nearly burnt out, when by the glimmer of the half extinguished light, I saw the dull yellow eye of the creature open. It breathed hard, and a convulsive motion agitated its limbs.

  How can I describe my emotions at this catastrophe, or how delineate the Wretch whom with such infinite pains and care I had endeavoured to form? His limbs were in proportion, and I had selected his features as beautiful. Beautiful! — Great God! His yellow skin scarcely covered the work of muscles and arteries beneath. His hair was lustrous black and flowing; his teeth of pearly whiteness. But these luxuriances only formed a more horrid contrast with his watery eyes, that seemed almost of the same colour as his dun-white sockets in which they were set, his shrivelled complexion and straight black lips.56

  5

  As her novel developed, Mary Shelley began to ask in what sense Frankenstein’s new ‘Creature’ would be human. Would it have language, would it have a moral conscience, would it have human feelings and sympathies, would it have a soul? (It should not be forgotten that Mary was pregnant with her ow
n baby in 1817.) Many of Lawrence’s reflections on the metaphysics of the dissecting room and the theory of brain development seem to be echoed in ideas and even complete phrases used in Frankenstein. Here again it seems that Shelley, who was attending medical consultations with Lawrence throughout spring 1817, and may sometimes have been accompanied by Mary, made an opportunity for all three of them to explore these specialist themes.57

  Mary Shelley’s idea of the mind was, like Lawrence’s, based on the notion of the strictly physical evolution of the brain. This is how Lawrence was provocatively challenging his fellow members of the Royal College of Surgeons in his lectures of 1817: ‘But examine the “mind,” the grand prerogative of man! Where is the “mind” of the foetus? Where is that of a child just born? Do we not see it actually built up before our eyes by the actions of the five external senses, and of the gradually developed internal faculties? Do we not trace it advancing by a slow progress from infancy and childhood to the perfect expansion of its faculties in the adult …’58

  Frankenstein’s Creature has been constructed as a fully developed man, from adult body parts, but his mind is that of a totally undeveloped infant. He has no memory, no language, no conscience. He starts life as virtually a wild animal, an orangutan or an ape. Whether he has sexual feelings, or is capable of rape, is not immediately clear. Although galvanised into life by a voltaic spark, the Creature has no ‘divine spark’ from Heaven. Yet perhaps his life could be called, in a phrase of the medical student John Keats, a ‘vale of soul-making’.

  Almost his first conscious act of recognition, when he has escaped the laboratory into the wood at night, is his sighting of the moon, an object that fills him with wonder, although he has no name for it: ‘I started up and beheld a radiant form rise from among the trees.♣ I gazed with a kind of wonder. It moved slowly, but it enlightened my path … It was still cold … No distinct ideas occupied my mind; all was confused. I felt light, and hunger, and thirst, and darkness; innumerable sounds rung in my ears and on all sides various scents saluted me. … Sometimes I tried to imitate the pleasant songs of the birds, but was unable. Sometimes I wished to express sensations in my own mode, but the uncouth and inarticulate sounds which broke from me frightened me into silence again … Yet my mind received, every day, additional ideas.’59