Page 60 of The Age of Wonder

But Herschel soon found himself drawn into a public debate about the personalities and administration of science, quite unlike anything his father had experienced. The unworldly Michael Faraday could not be persuaded to stand. The mercurial Charles Babbage was regarded as unreliable and unsuitable. Both Wollaston and Thomas Young were dead, while the aristocratic candidate was the charming but ineffective Duke of Sussex, brother to King George IV, who knew nothing about science at all – although this was considered by some more traditional Fellows to be an overwhelming advantage.

  After a good deal of gentlemanly infighting, during which Herschel threatened to withdraw his candidature, the Duke of Sussex was elected in 1830 by a very narrow majority: 119 votes to 111. Babbage, checking his statistics, noted with disgust that less than 33 per cent of the membership had voted. This unsatisfactory result led to a breakaway movement by a handful of young scientists around Herschel. They began to think of circumventing the Royal Society entirely, and appealing to a wholly different constituency: the ‘amateur’ men (and women) of science who belonged to the provincial scientific or ‘philosophical’ societies and institutions outside London. As if too soothe Herschel, he was promptly knighted, on a recommendation that many thought came from the Duke of Sussex, anxious to placate his rival. If so, it did not have the desired effect.

  Between 1829 and 1831 a series of publications by John Herschel, his friend Charles Babbage and the Scottish science writer David Brewster (who had done fine research work on polarised light) pursued the emotive theme of the supposed ‘decline of Science in Britain’. The debate was taken up by the leading journals, rapidly moved beyond the Royal Society, and became one about national culture and the role of the man of science in society. It was no coincidence that all this took place at the same time as the national self-questioning reflected in the violent political debates surrounding the Great Reform Bill.

  2

  The first salvo was fired by Charles Babbage, when he released a slim but carefully targeted volume, provocatively entitled Reflections on the Decline of Science in England, in the spring of 1830. Two years previously Babbage had been appointed Lucasian Professor of Mathematics at Cambridge, Newton’s old chair, and he had considerable influence. It was known that his lectures on astronomy at the Royal Institution in 1817 had won the approval of Sir William Herschel, and that his research work had been supported by Sir Humphry Davy. He was wealthy, and had a large house in London at Dorset Square. Here he was working on his famous ‘Difference Engine No. 1’, a prototype computer which would require 25,000 brass cogs to function. After expending over £17,000 (a colossal sum) of his own money on it, he was understandably keen on the notion of government funding for such projects. This gave added energy, or bias, to his attack.

  Babbage’s prototype computer later became one of the legends of Victorian science, and a parable about the failure of government research funding. At the point when he ran out of money in 1832, Babbage had succeeded in constructing one self-contained section of his Difference Engine No. 1, employing 2,000 brass components, which still exists and works impeccably as an automatic calculator. A more sophisticated Analytical Engine’ using a punched-card input and mechanical ‘store’ on 50,000 brass cogs, the genuine equivalent of a modern computer’s RAM ‘memory’, was designed but never constructed. No one knows if this would have worked. However, Babbage’s Difference Engine No. 2, designed in the 1840s to use 4,000 brass cogs, was actually constructed by the Science Museum in 1991, and with some minor alterations works to this day, capable of calculating to thirty-one places of decimals — an impressive power. It weighs three tons and cost £300,000 — considerably cheaper, in relative terms, than the original.4 ♣

  Babbage’s outspoken book was a polemical exposé of weak British scientific institutions and casual attitudes to research. He compared these with the culture of scientific research fostered by the great Continental Academies of Science, in Paris and Berlin. Though ‘eminently distinguished for mechanical and manufacturing ingenuity’, Britain was shamefully ‘below other nations’ in pure sciences. While he referred respectfully to the achievements of both Sir Humphry Davy and Sir William Herschel, Babbage implied that times had changed radically.

  He instanced the lack of government funding for research, the fact that there had so far been no honours for distinguished scientists such as Faraday and the meteorologist Beaufort, and the lack of recognition for the chemical work of John Dalton and Wollaston. He criticised the weakness of science teaching in the universities (apart, evidently, from his own field, mathematics) and the failure of the Royal Society to fund large scientific projects, or promote the public understanding of science in Britain. Despite its ringing motto, Nullius in Verba, the Society fostered no generally agreed philosophy of science.

  Babbage’s attack on the Royal Society became increasingly contemptuous. Where, he asked, were the British equivalents of Berzelius (Sweden), Humboldt (Germany), Oersted (Denmark) or Cuvier (France)?5 He claimed that the Society’s members were lazy, elitist, ignorant and largely dedicated to club dinners. In a devastating early use of statistical analysis, he showed that only 10 per cent of the 700 members had published two or more scientific papers.6 He also jeered that British scientific societies were so easy for an amateur to join, that for the expenditure of precisely ‘ten pounds, nine shillings and nine pence ha’penny’ he had calculated that anyone could obtain ‘a comet’s trail of upwards 40 letters’ as initials after his name — like FRS, for example.7

  Babbage described the present Royal Society with a simile drawn pointedly from Herschel’s work. It was utterly devoid of ‘bright stars’, and ‘only visible to distant nations, as a faint Nebula in the obscure horizon of English science’.8 He also urged a critical attitude to ‘publication of experimental data’, and the necessity for peer-reviewing — not, up till then, considered quite fair play. As a further provocation, he gleefully introduced such ungentlemanly terms as ‘hoaxing, forging, trimming and cooking results’, which he claimed should be applied very strenuously.9

  Babbage concluded the book with a suggestive comparison between the contrasted scientific styles of Wollaston and Davy. The first had been a meticulous, patient scientist, utterly without worldly ambition, and modest and private in his profession. He was primarily interested in getting precise results that avoided all possibility of bias or error. The second was a restless scientific enquirer, rapid and ambitious in all his work, superb at popularising and explaining his projects, driven by the desire to pursue and establish the truth, and to be the first to do so at whatever cost. Wollaston, he concluded, was a pure, saint-like man of science, while Davy was also a publicist and visionary: ‘Wollaston could never have been a poet; Davy might have been a great one.’ In the future, Babbage seemed to imply, British science would need both types.10

  He added, for good measure, a section describing John Herschel at work in his laboratory at Slough, analysing ‘the dark lines seen in the solar spectrum by Fraunhofer’.♣ Babbage perhaps intended a sort of parable of science for the new generation. His story went as follows. When Babbage first peered carefully at the shimmering solar image projected through Herschel’s prism, he could not see these dark Fraunhofer lines, though he knew they were there. Herschel then commented to him: ‘An object is frequently not seen, from not knowing how to see it, rather than from any deficit in the organ of vision … I will instruct you how to see them.’11 After some time spent re-examining and refocusing the image, Babbage could see them perfectly. The point was that science must always be more than the simple observation of phenomena or data. It was simultaneously a subjective training in observational skills, self-criticism and interpretation: a complete education. This was of course precisely what William Herschel had said forty years before, about learning to see with a telescope.

  To add a final sting in the tail, Babbage slipped in an Appendix enthusiastically praising the 1828 conference of the Berlin Academy of Sciences, which he had attended. It had gr
eat scientists — like its President Humboldt, who had delivered an address praising Goethe — and great visions of the future. It would next meet in Vienna in 1831. He now proposed a new ‘Union of Scientific Societies’ in Britain, to follow this admirable German model, with annual meetings in cities outside London. By all means the Royal Society could send participants, if it should so bestir itself. But who else would rally to the cause? Babbage’s subversive tract was the first manifesto for what in 1831 would become the British Association for the Advancement of Science.12

  Michael Faraday would not be drawn into this whirlpool of controversy. Instead he encouraged a Dutch chemist, Gerard Möll, to write a gentle reply and reproof to Babbage, ‘By a Foreigner’. Möll observed that ‘the English have quite enough of their natural and foreign political enemies, without waging a civil-scientific war between themselves … The Barons of the French Institute will be highly amused … A neutral foreigner cannot help seeing with regret Englishmen scoff and rail at things which ought to have been looked upon as the pride of their country.’13

  John Herschel was not to be deterred by this appeal to his patriotic and gentlemanly instincts. He followed his friend with a quite different and much subtler line of attack. He decided to put forward a progressive view of British science, and hold out the possibilities of a golden future.

  3

  Herschel’s quietly phrased but immensely authoritative book A Preliminary Discourse on the Study of Natural Philosophy was published as the first volume in a popular series, Lardner’s Cabinet Cyclopaedia. Despite its anodyne title, deliberately chosen to offset Babbage’s style of provocation, this became a hugely popular work which would run into many new editions throughout the early Victorian period.

  John Stuart Mill would recall in his Autobiography how, after his nervous breakdown and therapeutic immersion in the poetry of Wordsworth and Coleridge, it was Herschel’s book that showed him how far he had recovered his intellectual grasp by 1837. ‘Under the impulse given me by the thoughts excited by Dr Whewell, I read again Sir J. Herschel’s Study of Natural Philosophy, and I was able to measure the progress my mind had made, by the great help I now found in this work.’14

  Herschel first looked back at the great triumphs of Romantic science, very properly including work done in France and Germany, and appealed for the public understanding of ‘professional science’ in Britain. It was a profession first proposed by Bacon, based on the fundamental value of free enquiry.15 Herschel defined its field as a rapidly expanding arc of scientific disciplines: the classical ones — mathematics, astronomy and optics — now joined by the study of electricity, chemistry, magnetism, geology, botany and gases.16 He argued that common to all of them was the three-part ‘inductive’ method. First, the precise gathering of quantitative data by observation and experiment; second, the emergence of a general ‘hypothesis’ from this data; and third, the testing of this hypothesis once more by experiment and observation, to see if it could be disproved.17 This inductive discipline was central to all sciences, and led on to the first aim of free scientific enquiry: the investigation of the unknown. ‘The immediate object we propose to ourselves in physical theories is the analysis of phenomena, and the knowledge of the hidden processes of Nature in their production, so far as they can be traced by us.’18 Nature was still hidden and mysterious, alive with ‘processes’ and powers, though Herschel was careful to avoid any hint of Naturphilosophie, or any speculation about the ‘Power and Intelligence’ that might ultimately maintain it. Nevertheless, nature revealed continuously ‘wonder upon wonder’.19

  This was greeted as the first attempt since Francis Bacon’s Novum Organum, or New Instrument (1620) to write a popular treatise on the inductive philosophy of science. It had an engraving of Bacon (with both microscope and telescope — micromegas) on the title page, and began with a Latin epigraph from Cicero: In primis, hominis est propria VERI inquisitio atque investigatio’. This was translated for the reader as ‘Above all other things, Man is distinguished by his pursuit and investigation of TRUTH’ — an interesting assertion. Of course the whole text was written in English, though Herschel chose the shrewd device of organising it in numbered paragraphs, as well as conventional literary chapters. Indeed it emerged that Herschel, unlike his father, could write fluently, and sometimes with great imaginative force. (One other effect of his Cambridge education was that throughout his life he wrote admirable light verse, and later completed a translation of Virgil’s Aeneid.) In one passage he argued the necessity for clarity and precision in the use of scientific terms with almost poetic originality.

  For example, the words — square, circle, a hundred etc convey to the mind notions so complete in themselves, and so distinct from everything else, that we are sure when we use them we know the whole of our own meaning. It is widely different with words expressing natural objects and mixed relations.

  Take, for instance, IRON. Different persons attach very different ideas to this word. One who has never heard of magnetism has a widely different notion of IRON from one in the contrary predicament. The vulgar, who regard this metal as incombustible, and the chemist, who sees it burn with the utmost fury, and who has other reasons for regarding it as one of the most combustible bodies in nature; — the poet, who uses it as an emblem of rigidity; and the smith and the engineer, in whose hands it is plastic, and moulded like wax into every form; — the jailer, who prizes it as an obstruction, and the electrician who sees in it only a channel of open communication by which — that most impassable of objects — air may be traversed by his imprisoned fluid, have all different, and all imperfect, notions of the same word.

  The meaning of such a term is like a rainbow — everybody sees a different one, and all maintain it to be the same.20

  That final embracing reference to ‘everybody’s’ rainbow was a deliberate act of inclusion: Newton’s rainbow, but also Wordsworth’s and Keats’s and Goethe’s are all implied.♣

  Herschel went on to praise the intellectual and even spiritual value of the true scientific outlook. Everything in nature became interesting and significant, nothing was beneath notice. The most ‘trifling natural objects’, such as a soap bubble, an apple or a pebble, could reveal a scientific law (respectively, the laws of aerostatics, gravitation or geology).

  To the natural philosopher there is no natural object unimportant or trifling … A mind that has once imbibed a taste for scientific enquiry has within itself an inexhaustible source of pure and exciting contemplations. One would think that Shakespeare had such a mind in view when he describes a contemplative man finding

  Tongues in trees — books in the running brooks

  Sermons in stones — and good in everything

  Where the uninformed and unenquiring eye perceives neither novelty nor beauty, he walks in the midst of wonders.21

  It is intriguing that Herschel was quoting from Shakespeare’s As You Like It (Act II, scene i), a scene which takes place in the idealised and magical Forest of Arden. Herschel evidently saw the ‘contemplative’ man of science naturally inhabiting such a sylvan world, a place of visions and transformations, where all turns out for the good. So among the triumphs of contemporary science he listed a series of simple discoveries and technological inventions that had hugely improved human safety: among them the lightning conductor, the lighthouse lens, the safety lamp, iodine and chlorine disinfectant (the last three being Davy’s).22

  Like Davy, Herschel chose chemistry as the exemplary discipline of the Romantic period. Developing from the errors of alchemy and phlogiston theory, chemistry had been ‘placed in the ranks of the exact sciences — a science of number, weight and measure’. It had produced practical applications in every sphere: medicine, agriculture, manufacturing, aerostation and meteorology, for example. But it had also advanced pure science: the doctrines of oxygen, latent heat, atomic weight, polar electricity and the prime elements (of which more than fifty were now known). Moreover, this was the achievement of an internationa
l group: Lavoisier, Black, Dalton, Berzelius, Gay-Lussac and Davy.23

  In ten brilliantly clear and even thrilling pages (paragraphs numbered 368-77), Herschel gave an international history of fifty years’ researches into electricity, from Franklin and Galvani to Davy and Oersted. From early vague ideas of some mysterious natural fluid — a ‘wonderful agent’ – seen in lightning strikes, the Aurora Borealis or ‘the crackling sparks which fly from a cat’s back when stroked’, he traced the experimental path which led to increasingly precise and sophisticated concepts of electrical current, conductors, positive and negative poles, batteries, charge and discharge, animal electricity (‘an unfortunate epithet’), nervous circuitry, chemical affinity (Davy’s ‘total revolution’) and ‘the wonderful phenomenon of electro-magnetism’, which awaited further exploration.24

  Herschel prophetically implied that electricity and electro-magnetism still hid many secrets, and that their investigation would become the leading science of the new age. This would indeed be Faraday’s coming field of triumph. He summarised (paragraph no. 376) this pursuit in the image of a great and noble sea voyage of exploration. ‘There is something in this which reminds us of the obstinate adherence of Columbus to his notion of the necessary existence of the New World; and the whole history of this beautiful discovery may serve to teach us reliance on those general analogies and parallels between great branches of science by which one strongly reminds us of another, though no direct connection appears.’25

  This notion of a great network or connection of sciences, beginning to form a single philosophy and culture, was crucial to his book. In the same positive vein Herschel argued that science, while often going against common sense or intuition, expanded the human imagination with previously inconceivable ideas of movement or magnitude. The examples he gave were the speed of starlight, the movement of a gnat’s wings, or the vibrations of colour frequency. Finally he promoted the moral value of science. It was a source of clarity and intellectual excitement, and (perhaps more controversially) of philosophical calm in troubled times. In all these ways John Herschel sought to give ‘the man of science’ a new and central place in English society — and not just the Royal Society.