Page 21 of Stiff


  Back in the cab I explained myself to Sandy as best I could. I apologized for putting her through this. She laughed. We both laughed. We laughed so hard that the cab driver demanded to know what we were laughing about, and he laughed too. The cab driver had grown up in Haikou, but he hadn’t heard the story of the Guang brothers. Neither, it later turned out, had any of Sandy’s friends. We had the driver let us off at the Haikou public library to look for the original article. As it turns out, no paper named the Hainan Special Zone Daily exists, only the Hainan Special Zone Times, which is a weekly. Sandy looked through the papers for the week of March 23, 1991, but there was no mention of the human dumplings. She also checked old phone books for the White Temple Restaurant and found nothing.

  There wasn’t much more to do in Haikou, so I took the bus south to Sanya, where the beaches are beautiful and the weather is fine and there is, I found out, another crematorium. (Sandy called the director and received a similarly indignant reply.) On the beach that afternoon, I spread my towel a few feet away from a wooden sign that advised beach-goers, “Do not spit at the beach.” Unless, I thought to myself, the beach suffers from nightmares, ulcers, ophthalmia, or fetid perspiration.

  Anthropologists will tell you that the reason people never dined regularly on other people is economics. While there existed, I am told, cultures in Central America that actually ranched humans—kept enemy soldiers captive for a while to fatten them up—it was not practical to do so, because you had to give up more food to feed them than you’d gain in the end by eating them. Carnivores and omnivores, in other words, make lousy livestock. “Humans are very inefficient in converting calories into body composition,” said Stanley Garn, a retired anthropologist with the Center for Human Growth and Development at the University of Michigan. I had called him because he wrote an American Anthropologist paper on the topic of human flesh and its nutritional value. “Your cows,” he said, “are much more efficient.”

  But I am not so much interested in cultures’ eating the flesh of their captive enemies as I am in cultures’ eating their own dead: the practical, why-not model of cannibalism—eating the meat of fresh corpses because it’s there and it’s a nice change from taro root. If you’re not going out and capturing people and/or going to the trouble of fattening them up, then the nutritional economics begin to make more sense.

  I found an American Anthropologist article—a reply to Garn’s—stating that there are in fact instances of groups of humans who will eat not only enemies they have killed, but members of their own group who have died of natural causes. Though in every case, the author, University of California, San Diego, anthropologist Stanley Walens, said, the cannibalism was couched in ritual. No culture, as far as he knew, simply carved up dead tribe members to distribute as meat.

  Garn seemed to disagree. “Lots of cultures ate their dead,” he said, though I couldn’t get any specifics out of him. He added that many groups—too many, he said, to specify—would eat infants as a means of population control when food was scarce. Did they kill them or were they already dead, I wanted to know.

  “Well,” he replied, “they were dead by the time they ate them.” This is how conversations with Stanley Garn seem to go. Somehow, midway through our chat, he steered the conversation from nutritional cannibalism to the history of land-fill—a pretty sharp turn—and there it more or less remained. “You should write a book about that,” he said, and I think he meant it.

  I had called Stanley Garn because I was looking for an anthropologist who had done a nutritional analysis of human flesh and/or organ meats. Just, you know, curious. Garn hadn’t exactly done this, but he had worked out the lean/fat percentage of human flesh. He estimates that humans have more or less the same body composition as veal. To arrive at the figure, Garn extrapolated from average human body fat percentages. “There’s information of that sort on people in most countries now,” he said. “So you can see who you want for dinner.” I wondered how far the beef/human analogy carried. Was it true of human flesh, as of beef, that a cut with more fat is considered more flavorful? Yup, said Garn. And, as with livestock, the better nourished the individuals, the higher the protein content. “The little people of the world,” said Garn—and I had to assume he was referring to the malnourished denizens of the third world and not dwarfs—“are hardly worth eating.”

  To my knowledge there is only one group of individuals today whose daily diet may contain significant amounts of their own dead, and that is the California canine. In 1989, while researching a story on a ridiculous and racist law aimed at preventing Asian immigrants from eating their neighbors’ dogs (which was already illegal because it’s illegal to steal a dog), I learned that, owing to California Clean Air Act regulations, humane societies had switched from cremating euthanized pets to what one official called “the rendering situation.” I called up a rendering plant to learn into what the dogs were being rendered. “We grind ’em up and turn ’em into bone meal,” the plant manager had said. Bone meal is a common ingredient in fertilizers and animal feed—including many commercial dog foods.

  Of course, no humans are made into fertilizer after they’re dead. Or not, anyway, unless they wish to be.

  11

  OUT OF THE FIRE, INTO THE COMPOST BIN

  And other new ways to end up

  When a cow dies on a visit to the hospital, it does not go to a morgue. It goes to a walk-in refrigerator, such as the one at Colorado State University Veterinary Teaching Hospital, in Fort Collins. Like most things in walk-in refrigerators, the bodies here are arranged to maximize space. Against one wall, sheep are stacked like sandbags against a flood. Cows hang from ceiling hooks, effecting the familiar side-of-beef silhouette. A horse, bisected mid-torso, lies in halves on the floor, a vaudeville costume after the show.

  The death of a farm animal is death reduced to the physical and the practical: a matter of waste disposal and little more. With no soul to be ushered onward, no mourners to attend to, death’s overseers are free to pursue more practical approaches. Is there a more economical way to dispose of the body? A more environmentally friendly way? Could something useful be done with the remains? With our own deaths, the disposal of the body was for centuries incorporated into the ritual of memorial and farewell. Mourners are present at the lowering of the coffin and, until more recently, the measured, remote-control conveyance of the casket into the cremation furnace. With the majority of cremations now done out of view of the mourners, the memorial has begun to be separated from the process of disposal. Does this free us to explore new possibilities?

  Kevin McCabe, owner of McCabe Funeral Homes in Farmington Hills, Michigan, is one man who thinks that the answer is yes. One day soon, he plans to do to dead people what Colorado State University is doing to dead sheep and horses. The process—called “tissue digestion” when you speak to the livestock people and “water reduction” when you speak to McCabe—was invented by a retired pathology professor named Gordon Kaye and a retired professor of biochemistry named Bruce Weber. McCabe is the mortuary consultant for Kaye and Weber’s company, WR2, Inc., based in Indianapolis, Indiana.

  The mortuary end of corpse disposal had been a low priority over at WR2 until the spring of 2002, when Ray Brant Marsh of Noble, Georgia, dragged the good name of crematory operators everywhere about as far through the mud as a name could go. At last count, some 339 decomposing bodies were found on land surrounding his Tri-State Crematory—stacked in sheds, dumped in a pond, crammed in a concrete burial vault. Marsh initially claimed the incinerator wasn’t working, but it was. Then rumors of decomposing body photos in his computer files made the rounds. It began to look as though Marsh wasn’t simply cheap and unethical, but deeply strange. As the body count grew, Gordon Kaye began to get calls: half a dozen from funeral directors, and one from a New York State assemblyman, all wanting to know how soon the mortuary tissue digestor might be available, should the public begin to shun crematoriums. (At that time, Kaye estimated it would be anothe
r six months.)

  In a few hours, Kaye and Weber’s equipment can dissolve the tissues of a corpse and reduce it to 2 or 3 percent of its body weight. What remains is a pile of decollagenated bones that can be crumbled in one’s fingers. Everything else has been turned into what the WR2 brochure describes as a sterile “coffee-colored” liquid.

  Tissue digestion relies on two key ingredients: water and an alkali better known as lye. When you put lye into water, you create a pH environment that frees the hydrogen ion of the water to break apart the proteins and fats that make up a living organism. That’s why “water reduction,” though clearly a euphemism, is an apt term. “You are using water to break the chemical bonds in the large molecules of the body,” says Kaye. But Kaye does not gloss over the lye. This is a man who has spent eleven years in the world of carcass disposal (or “disposition,” if you are speaking with McCabe). “In effect, it’s a pressure cooker with Drano,” says Kaye of his invention. The lye does more or less what it would do if you swallowed it. You don’t digest it, it digests you. What’s nice about an alkali, as opposed to an acid, is that in doing the deed, the chemical renders itself inert and can be safely flushed down the drain.

  There is no question that tissue digestion makes good sense for disposing of dead animals. It destroys pathogens, and, more important, it destroys prions—including the ones that cause mad cow disease—which rendering cannot reliably do. It does not pollute, as incinerators do. And because no natural gas is used, the process is approximately ten times cheaper than incineration.

  What are the advantages for humans? If they’re humans who own funeral homes, the advantage is economical. A mortuary digestor will be relatively inexpensive to buy (less than $100,000) and, as mentioned, a tenth as expensive to run. Digestors make especially good sense in rural areas whose populations are too small to keep a crematory furnace continuously active, which is the best way for it to be. (Firing it up and letting it cool all the way down and refiring it over and over damages the furnace lining; ideally, you want to keep the fire going nonstop, turning it down just low enough to remove the ashes and put the next body in, but this presumes a steady lineup of corpses.)

  What are the advantages for humans who don’t own funeral homes? Assuming it’s going to cost a family more or less the same as cremation would, why would someone choose to have this done? I asked McCabe, a chatty, affable Midwesterner, how he plans to market the process to bereaved families. “Simple,” he said. “To families who come in and say, ‘I want him to be cremated,’ I’m gonna say, ‘No problem. You can cremate him, or you can do our water reduction process.’ And they’re gonna say, ‘What’s that?’ And I’m gonna go, ‘Well, it’s like cremation, but we do it with water under pressure instead of fire.’ And they’re gonna go, ‘All right! Let’s do it!’”

  And the media is gonna go. “There’s lye in there. You’re boiling them in lye!” I mean, Kevin, I said, aren’t you leaving out a pretty big part of it? “Oh, yeah, they’re gonna know all that,” he said. “I’ve talked to people and they have no problem.” I’m not sure I believe him on these two points, but I do believe what he said next: “Besides, watching somebody cremated is not pretty.”

  I decided I had to see the process for myself. I contacted the chairman of the state anatomical board in Gainesville, Florida, where for the past five years digestors have been taking care of anatomy lab leftovers—here under the name “reductive cremation,” in order to hopscotch state regulations that willed bodies be cremated. When I got no reply, Kaye gave me a contact at Colorado State. And that is how I came to be standing in a walk-in refrigerator full of dead livestock in Fort Collins, Colorado.

  The digestor sits on a loading dock, fifteen feet from the walk-in. It is a round stainless-steel vat similar in size and circumference to a California hot tub. Indeed, when full, the two hold approximately the same mass of heated liquid and passive bodies: about seventeen hundred pounds.

  Manning the digestor this afternoon is a soft-voiced wildlife pathologist named Terry Spracher. Spracher wears rubber boots pulled over his pants, and latex gloves. Both are streaked with blood, for he has been doing sheep necropsies.* Despite what his job duties might suggest, this is a man who loves animals. When he heard I lived in San Francisco, he brightened and said that he enjoyed visiting the city, and the reason he enjoyed it was not the hills or the Wharf or the restaurants but the Marine Mammal Center, an obscure ecology center up the coast where oil-soaked otters and orphaned elephant seals are rehabbed and released. I guess this is how it is with animal careers. If you deal with animals for a living, you generally also deal with their deaths.

  Above our heads, the unit’s perforated liner basket hangs from a ceiling-mounted hydraulic hoist on a track. A taciturn, ginger-haired lab assistant named Wade Clemons pushes a button, and the basket travels across the loading dock to the door of the walk-in, where he is standing. When he’s done loading the basket, he and Spracher will guide it back to the airspace above the digestor and lower it in. “Just like french fries,” says Spracher quietly.

  Hanging from the hoist inside the walk-in is a large steel hook. Clemons bends down to couple this to a second hook, anchored on a thick band of muscle at the base of the horse’s neck. Clemons presses a button. The half-horse rises. The sight is a disquieting blend of horse-as-we-know-it—placid, dejected horse face; silken mane and neck where young girls’ hands went—and slasher-flick gore.

  Clemons loads one half, then the other, lowering it down in beside its partner, the two halves fitting neatly together like new shoes in a box. With the seasoned expertise of a grocery bagger, Clemons loads sheep, a calf, and the nameless slippery contents of two ninety-gallon “gut buckets” from the necropsy lab, until the basket is full.

  Then he presses a button that sends the basket along the ceiling track on a short, slow trip across the loading dock to the digestor. I try to imagine a cluster of mourners standing by, as they have stood by gravesides as winches lower coffins, and in cremation parlors as coffins on conveyor belts are pulled slowly into crematory retorts. Of course, for mortuary digestions, some alterations will be made in the name of dignity. The mortuary model will use a cylindrical basket and will process only one body at a time. McCabe doesn’t see this as something the family would stand around and watch, though “if they wanted to see the equipment, they’d be welcome.”

  With the basket in place, Spracher closes the digestor’s steel hatch and presses a series of buttons on the computerized console. Washing-machine noises can be heard as water and chemicals pour into the tank.

  I return for the raising of the basket, the following day. (The process normally takes six hours for a load this size, but Colorado State needs to upgrade its pipes.) Spracher unbolts the hatch and raises the lid. I don’t smell anything, and am emboldened to lean my head over the vat and peer inside. Now I smell something. It is a large, assertive smell, unappetizing and unfamiliar. Gordon Kaye refers to the smell as “soaplike,” leading one to wonder where he buys his toiletries. The basket appears largely empty, which is pretty amazing when you think about what it looked like going in. Clemons turns on the hoist, and the basket rises from the machine. At the bottom is a foot and a half of bone hulls. I resolve to take Kaye’s word for it that you can crumble them in your fingers.

  Clemons opens a small door near the base of the basket and scrapes the bones out into a Dumpster. Though it’s no more grisly than the emptying of a crematory retort, it’s hard for me to imagine this catching on as part of the American funerary tradition. But here again, the funerary rendition wouldn’t go quite like this. Had this been a mortuary digestion, the bone remnants would be dried and either pulverized for scattering or, as McCabe envisions, placed in a “bone box,” a sort of mini-coffin that could be stored in a crypt or buried.

  Everything other than bone has liquefied and disappeared down the drain. When I got back home I asked McCabe how he was going to handle the potentially disturbing realities of the d
early departed’s molecules ending up in the municipal sewer system. “The public seems okay with it,” he said. Contrasting it with cremation, he said. “You’re either going to go in the sewer or you’re going to go up in the atmosphere. People who are environmentally conscious know that we’re better off putting something sterile and pH-neutral into the sewer than we are letting mercury [from fillings] go into the air.”* McCabe is counting on environmental conscience to sell the process. Will it work?

  We’ll soon see. McCabe is poised to take delivery of the world’s first mortuary tissue digestor sometime in 2003.

  You have only to look at the story of cremation to appreciate that changing the way America disposes of its dead is a feat not easily accomplished. The best way to do this would be to buy a copy of Stephen Prothero’s Purified by Fire: A History of Cremation in America. Prothero is a professor of religion at Boston University, a masterful writer, and a respected historian; his book includes a bibliography of more than two hundred original and secondary sources. The second-best way to do it would be to read the passage that follows, which is basically small chunks of Prothero’s book run through the tissue digestor of my brain.

  Ironically, one of the cremationists’ earliest and loudest arguments in America was that cremation was less polluting than burial. In the mid-1800s, it was widely (and wrongly) believed that buried, decomposing bodies gave off noxious gases which polluted the groundwater and made their way up through the dirt to form deadly, hovering graveyard “miasmas” that tainted the air and sickened those who wandered past. Cremation was presented as the pure and hygienic alternative and might well have caught on then, had the first U.S. cremation not proved to be a PR disaster.