how to use to send secret messages over the internet, 200–3

  what is?, 194–6, 198–9

  clump, why numbers like to, 120

  coastline of Britain, how long is?, 80–1, 84–5, 88–9

  codes, 157–208

  Battle of Trafalgar, use at, 173

  binary, 138–9, 179–81

  Bletchley Park, 169–70

  Caesar shifts, 160–1

  chaos theory and, 228

  computer, 190–207

  cryptanalysis, 161–89

  DNA, 158

  early methods of sending, 158–9

  elliptical curve cryptography (ECC), 204–7

  Enigma machine, 166–70

  error-correcting, 145, 188–90

  flags used as, 170, 172–3

  frequency analysis, 165–77

  Help! (Beatles) and, 174–5

  how to toss a coin fairly across the internet, 190–2

  how to use to read minds, 185–90

  internet, 190–208

  ISBN, 184–5

  Kama Sutra, 159–61, 165

  Mary Queen of Scots use of, 164, 190

  Morse code, 177–9, 181

  one-time pad, 165

  predictability of, 235–8

  Second World War and, 165–70

  semaphore, 173–6

  smoke signals, 170

  steganography, 159

  substitution cipher, 159–77, 207–8

  telescope and, 170

  towers and, 170–2

  visual, 170–6

  what is?, 157

  why cracking numbers equals cracking codes, 192–4

  coin tossing: how to toss a coin fairly across the internet, 190–2

  predictability of, 235–7

  Coldplay, 179, 182–3, 188

  Columbus, Christopher, 212–13

  Columbus, Ferdinand, 212

  computer codes, 190–207

  Contact (Sagan), 18

  Cooper, Bob “The Rock,” 112

  Crick, Francis, 69

  Crucifixion (Corpus Hypercubus) (Dali), 96

  cryptanalysis, 161–89; see also codes

  cube: four-dimensional, 93–7

  hypercube, 94–6

  as soccer ball shape, 60–1

  Water Cube (Beijing Olympic swimming center), 70–7

  Cube (film), 17

  Curious Incident of the Dog in the Night-time (Haddon), 17

  Da Vinci Code (Brown), 41

  Dalí, Salvador, 96

  denticles, 249

  Descartes, René, 45, 91–3, 95

  deterministic systems, 230–1, 235

  Diaconis, Persi, 235–6

  dice: classic soccer ball shape and, 131–2

  cube-shaped, 129

  discovering all the possible, 129–32

  Dungeons and Dragons, 129–32

  first, 128–9

  prime numbers and, 51–2

  tetrahedral, 128–9; 20-faced, 130–1

  “difference engine,” 166

  diplomatic party problem, 152–3

  Dirichlet, Gustav Lejeune, 191

  Discordianists, 7

  DNA, 19, 55, 69, 98, 158

  code, 158

  shape of, 98

  dodecahedron, 61, 65, 76–8, 106–7, 129, 132

  doubling, 44, 48–50

  duality, 131

  Dungeons and Dragons, 129–30

  Dürer, Albrecht, 142

  easy challenge, an, 192, 208

  eclipse, 210–14

  eggs: can you make an egg defy gravity?, 225–6

  sending codes with, 158–9

  Egypt, ancient, 10, 20–1, 25, 29, 110, 128, 220

  Electronic Frontier Foundation, 47

  Elements, The (Euclid), 62

  Elizabeth I, Queen, 46, 164

  elliptical curve cryptography (ECC), 204–7

  Elvenich, Hans-Michael, 47

  Enigma machine, 166–70

  equilateral triangle, 60, 61, 64–5, 70, 79, 132

  Eratosthenes, 31–4

  Erdös, Paul, 34

  error-correcting codes, 145, 188–90

  Euclid, 32–3, 35, 62

  Euler, Leonhard, 46, 143–50

  Fermat’s little theorem, version of, 197–9

  Graeco-Latin squares and, 144–6

  path, 147–8, 150

  soldiers puzzle, 143–5

  European Football Championship (1968), 235

  extraterrestrials, using prime numbers to communicate with, 6, 18–19

  falling cat theorem, 236

  falling object, weight and speed of, 216

  fantasy football game, prime number, 9–10

  Fermat, Pierre de: “last” theorem, 196

  little theorem, 196, 197–9, 203

  prime numbers, work on, 36–7, 45, 123, 191, 196–200, 208

  ferns, 86

  Fibonacci numbers, 40–3, 113–14

  Fifth Symphony (Beethoven), 176–7

  Finer, Jem, 16

  Finkel, Irving, 129

  fishy formula game, 243–6

  flags, communicating with, 170, 172–3

  foam, 70–7

  four dimensional geometry: four-dimensional cube, 93–7

  how to see in

  four dimensions, 91–4

  invention of, 91–4, 105

  fractals: brains drawn to, 90

  chaos theory and, 232–3

  coastline of Britain and, 80–4, 88–9

  dimensions greater than 1

  but smaller than 2, 86–9

  ferns and, 86

  fractal dimensions, 86–91

  generated by simple mathematical rules, 86

  human lung, 86, 89

  Jackson Pollock and, 89–91

  natural evolution of, 86

  snowflake and, 79

  Freeman, Robert, 175

  frequency analysis, 165–77

  future, quest to predict, 209–51

  airplane’s wing, lift of, 222–3, 247, 249

  calendars, 211–12

  casinos and, 237–8

  chaos theory, 230–33

  coin tossing and, 235–7

  eclipse, 210–14

  eggs, 225–6

  gravity and, 215–16, 226–8

  lemmings, death of, 238–42

  number 19 and 211–12

  pendulums, 226–8, 231–3

  quadratic equations, 218–21

  soccer balls, science of moving, 246–51

  weather forecasting, 209, 234–5, 238, 250

  weight of falling object, 216

  why does a boomerang come back?, 221–5

  will the solar system fly apart?, 228–33

  Galilei, Galileo, 55, 215–17, 226–8, 247

  gambling: casino, mathematics of, 124–7, 237–8

  how to cheat at poker and do magic using the million-dollar prime number, 121–4

  lottery, 114–20, 124

  perfect shuffle, 121–3

  Gaudí, Antonio, 142

  Gauss, Carl Friedrich: coded communication, work on, 176–7

  prime numbers, work on, 51–2, 123

  Gematria, 26

  geometry, 56, 91–4, 97–8, 105,. 206–7, 221–2

  Archimedean solids, 63–5, 67, 70, 74, 78, 131–2

  bubbles, 55, 56–9, 70–7

  Catalan solids, 78

  crystals of garnet, 78

  cube60–1

  diamond, radial symmetry of, 55

  dimensions greater than 1

  but smaller than 2, 86–9

  DNA and, 55, 69

  dodecahedron, 61, 65, 76–8, 106–7, 129, 132

  equilateral triangles, 61

  Euclid, 61–2

  ferns, 86

  foam and, 70–7

  fractal, 79–91

  great rhombicosidodecahedron, 164

  hexagonal honeycomb as most efficient structure, 74

  human lung, 55, 86, 89

  icosahedron, 61–2, 68–9, 129?
??32

  imagining shapes, 70

  Johnson solids, 78

  leaf, shape of, 55

  molecular structure of water, 78

  octahedron, 52, 61, 64, 74, 129, 132

  pentagons, 62, 75–6

  Platonic solids, 61, 63–4, 68–9, 77, 79, 129–30, 132

  Poinsot solids, 78

  pomegranate, 77–8

  rhombic dodecahedron, 78

  shaky polyhedra, 78

  six-pointed snowflake, 55, 77–9

  snub dodecahedron, 65

  soccer ball, how to make the world’s roundest, 59–60, 61, 64

  sphere, 56–62

  teabags, 65–8

  tetrahedron, 60–1, 63–4, 67–8, 73, 77, 79, 128–9

  tetrakaidecahedron, 76

  truncated octahedron, 64, 74–5

  truncated tetrahedron, 63–4

  universe, what shape is it? 55

  viruses, shape of, 68–9

  Water Cube (Beijing Olympic swimming center) 70–6

  zonohedra, 78

  golf balls, 247

  Google, 150

  Graeco-Latin squares, 144, 146

  gravity: can you make an egg defy? 225–6

  weight and speed of falling object, 216

  Great Internet Mersenne Prime Search (GIMPS), 46–7

  Greece, ancient, 29–32, 44–5, 48, 56–7, 62–3, 98, 104, 190, 205

  Gregorian calendar, 211–12

  gyroscopic effect, 222–3

  Hardy, G. H., 18, 164

  Heisenberg, Werner, 250

  Help! (Beatles), 174–5

  hexagonal honeycomb as most efficient structure, 74

  hexakis icosahedron, 132

  Histiaeus, 158

  Holmes, Susan, 236

  honeybees, 74

  Hooke, Robert, 170–1

  hopscotch, prime number, 37–40

  human lung, 55, 86, 89

  Hun-Yu, Chang, 49–50

  Hurwitz, Alex, 47

  hypercube, 94–6

  I Ching—Book of Changes, 179

  icosahedron, 61–2, 68–9, 129–32

  imaginary numbers, 52–3

  India, 23, 43–5, 129, 141–2, 220

  induction, 148

  infinity, idea of, 58

  Inspector Morse (television series), 178–9

  internet: Great Internet Mersenne Prime Search (GIMPS), 46–7

  how to toss a coin fairly across the, 190–2

  how to use a clock to send secret messages over the, 200–3

  security and codes, 190–207

  ISBN (International Standard Book Number), 184–5

  Islam, 141, 211, 220

  isosceles triangle, 132

  Italian lottery, 114–15

  iTunes, 182

  Jarvis, Frazer, 145

  Jewish/Hebrew outlook on prime numbers, 26–7

  Jordan, Michael, 6–7

  JPEGs, 182

  Kabbalah, 26

  Kama Sutra, 159–61, 165

  Kelvin, Lord, 74–6

  Kepler conjecture, 77

  Kepler, Johannes, 77–9

  al-Khwarizmi, Muhammad ibn-Musa, 220

  al-Kindi, Ya’qub, 161–2

  Klug, Aaron, 69

  Koch snowflake, 83, 87

  Koch, Helge von, 83, 87

  Königsberg, 145–50

  Koran, 220

  LA Galaxy, 8

  La Grande Arche, Paris, 94–5

  laminar flow, 248–9

  lateral thinking, 139–40, 199

  latitude and longitude, 92

  laws of nature, 228

  leaf, shape of, 55

  Leibniz, Gottfried, 58, 179–81

  lemmings, death of, 238–42, 245

  Life: A User’s Manual (Perec), 144

  London Ritz casino, 237

  London Underground, 98, 146

  Longplayer, 16

  lottery: calculating the odds, 115–20, 124

  how can I win?, 114–20

  Italian, 114–15

  Number Mysteries, 115–20, 156

  UK (National Lottery), 5, 116, 119

  magic: perfect shuffle, 121–3, 197

  using the million-dollar prime number problem in, 52–3, 121–3

  magic squares, 139–44; 3 x 3, 142; 4 x 4, 142; 6 x 6, 142; 9 x 9, 141, 142; 15 x 15, 142

  Dürer and, 142

  first, 141

  Graeco-Latin squares, 144, 146

  sudoku and, 143–5, 154

  Magnus effect, 247, 249

  Magnus, Heinrich, 247

  Man Who Mistook His Wife for a Hat, The (Sacks), 35

  Mandelbrot, Benoit, 84–5

  maps, topological, 98–9

  Mary Queen of Scots, 164, 190

  A Mathematician’s Apology (Hardy), 164

  Maya, 24–5, 29

  Melancholia (Dürer), 142

  Mercury (planet), 233

  Mersenne prime, 28, 45–7, 49

  Messiaen, Olivier, 14–16

  million-dollar prizes, 2, 6

  minesweeper, 153–4

  Mitterrand perspective, 94

  Mitterrand, François, 94

  mobile phones, 207, 237

  modular or clock arithmetic, 36, 195

  Monopoly, how can mathematics help you win at?, 133–4

  Montgomery, Richard, 236

  Morse code, 177–9, 181

  Morse, Samuel, 177

  M13 globular star cluster, 19

  musicians exploit prime numbers, 6, 14, 17

  Mussolini, Benito, 115

  name, calculating the value of, 26

  NASA, 19, 190, 215

  National Lottery (UK), 5, 116, 119

  Navier-Stokes equations, 250

  negative number, concept of, 29

  “needle in a haystack” problem, 151–2, 155

  Nelson, Horatio, 173, 190

  Newton, Isaac, 58, 105, 229–30, 237

  nim, 138–9, 179

  Norway, fractal dimension of coastline, 89–90

  NP-complete problems, 151–4

  NP v P, 151–2

  Number Mysteries: app, vii;

  lottery, 115–20, 156

  game show, 134–6

  website, vii, 9, 14, 32, 37, 62, 112, 129, 140, 144, 160, 170, 225, 243

  octahedron, 52, 61, 64, 74, 129, 132

  one-time pad, 165

  orbits, stability of, 229–31, 233

  Oscar II of Sweden and Norway, King, 229

  Ozanam, Jacques, 143

  packing problem, 155–6

  Pappus of Alexandria, 63

  Paris, 94–6

  Pasco, Lieutenant John, 173

  pattern recognition, 166

  pendulums, 226–8, 231–3

  chaos theory and, 235

  double, 227–8

  magnets and, 231–2

  predictability of, 226–8

  pentagons, 61, 62, 64, 65, 67, 69, 76–7, 130–1

  Pentakis dodecahedron, 132

  Perelman, Grigori, 107

  perfect numbers, 27–8

  perfect shuffle, 121–2

  PG Tips, 66–8

  Phelan, Robert, 75–6

  Phelippes, Thomas, 164

  Planck constant, 82

  Plateau, Joseph, 72–4, 76

  Plato, 32, 56, 60–4, 67, 69, 78, 106

  Platonic solids, 61, 63–4, 68–9, 77, 79, 129–30, 132

  Plutarch, 63

  Poincaré conjecture, 107

  Poincaré, Henri, 98–9, 107, 229–31, 233, 237

  poker: how to cheat at using the million-dollar prime number, 121–4

  perfect shuffle, 121–3

  probability of, 123–4

  Texas Hold’em, 123–4

  tips, 123–4

  Pollock, Jackson, 89–91

  pomegranate, 77–8

  Popham, Sir Home, 173

  population dynamics: lemmings, 238–42

  rabbits, 40–3

  Porta, Giovanni, 158

  P-proble
m, 152

  predictability: airplane’s wing, lift of, 222–3, 247, 249

  calendars, 211–12

  can you make an egg defy gravity? 225–6

  casino, mathematics of, 124–7, 237–8

  chaos theory, 230–5

  chocolate roulette, 136–8

  coin tossing and, 235–7

  eclipse, 210–14

  gravity of, 215–16, 225–6

  lottery, 114–20, 123–4

  magic squares, 139–45

  making choices random, 112–14, 118–19

  Monopoly, how can mathematics help you win at, 133–4

  nim, 138–9, 179–80

  number 19, 211–12

  perfect shuffle, 121–3

  pendulums, 227–8, 231–2

  planetary, 209

  poker (see poker); quadratic equations, 217–21

  rock-paper-scissors, how to become world champion, 110–12

  soccer ball, movement of, 209

  spotting patterns, 11–12

  weather, 209, 250

  weight of falling object, 215–16

  why does a boomerang come back?, 221–5

  will the solar system fly apart?, 228–33

  why numbers like to clump, 120–1

  Pregel, river, 145–6, 149

  prime numbers: 1 as a, 10

  American cicada and, 10–14, 15–17

  as building blocks of all numbers, 6, 8, 10, 18

  autism and, 35–6

  Babylonian, 21, 23–5, 29

  China and, 28–9

  cicada game, 14

  codes and, 190–207

  communicating with extraterrestrials and, 6, 18–19

  crossing universe with a dragon noodle and, 49–50

  curious incident of the never-ending, 5–53

  in ancient Egypt, 20–1, 25, 31

  dice and, 51–2

  doubling and, 44–5, 48–9

  fantasy football game, 9–10

  Fibonacci numbers, 40–3

  finding, 5–53

  get rarer and rarer in a regular way, 51–3

  Great Internet Mersenne Prime Search (GIMPS), 46–7

  in ancient Greece, 30–4, 45, 48

  Guinness book of, 46–9

  hopscotch, 37–40

  how long would it take to write a list of all the primes?, 32–3

  importance of, 5–8

  internet security and, 6, 190–207

  in literature, 17

  in movies, 17

  Jewish, 26–7

  Mayan, 24–5, 29

  Mersenne prime, 28, 45–7, 49

  musicians exploit, 6, 14, 17

  perfect numbers and, 27–8

  poker, magic, and Riemann hypothesis, 123

  “The Quartet for the End of Time,” 14–16

  rabbits and sunflowers used to find, 40–2

  record breaking, 46–8, 50

  rewards for finding, 6

  rice and chessboard to find, using, 44–5

  Riemann hypothesis, 123

  science fiction writers love of, 18–19

  shell evolution and, 42

  Sieve of Eratosthenes, 30–2, 34

  telephone number, what odds it is a prime number, 50–1