Page 23 of Genius


  Diffusion, that faintly obscure and faintly pedestrian holdover from freshman physics, lay near the heart of the problems facing all the groups. Open a perfume bottle in a still room. How long before the scent reaches a set of nostrils six feet away, eight feet away, ten feet away? Does the temperature of the air matter? The density? The mass of the scent-bearing molecules? The shape of the room? The ordinary theory of molecular diffusion gave a means of answering most of these questions in the form of a standard differential equation (but not the last question—the geometry of the containing walls caused mathematical complications). The progress of a molecule dependedon a herky-jerky sequence of accidents, collisions with other molecules. It was progress by wandering, each molecule’s path the sum of many paths, of all possible directions and lengths. The same problem arose in different form as the flow of heat througha metal. And the central issues of Los Alamos, too, were problems of diffusion in a newguise.

  The calculation of critical mass quickly became nothing more or less than a calculation of diffusion—the diffusion of neutrons through a strange, radioactive minefield, where now a collision might mean more than a glancing, billiard-ball change of direction. A neutron might be captured, absorbed. And it might trigger a fission event that would give birth to new neutrons. By definition, at critical mass the creation of neutrons would exactly balance the loss of neutrons through absorption or through leakage beyond the container boundaries. This was not a problem of arithmetic. It was a problem of understanding the macroscopic spreading of neutrons as built up from the microscopic individual wanderings.

  For a spherical bomb the mathematics resembled another strange and beautiful diffusion problem, the problem of the sun’s limb darkening. Why does the sun have a crisp edge? Not because it has a solid or liquid surface. On the contrary, the gaseous ball of the sun thins gradually; no boundary marks a division between sun and empty space. Yet we see a boundary. Energy diffuses outward from the roiling solar core toward the surface, particles scattering one another in tangled paths, until finally, as the hot gas thins, the likelihood of one more collision disappears. That creates the apparent edge, its sharpness more an artifact of the light than a physical reality. In the language of statistical mechanics, the mean free path—the average distance a particle travels between one collision and the next—becomes roughly as large as the radius of the sun. At that point photons have freed themselves from the pinball game of diffusion and can fly in a straight line until they scatter again, in the earth’s atmosphere or in the sensitive retina of one’s eye. The difference in brightness between the sun’s center and its edge gave an indirect means of calculating the nature of the internal diffusion. Or should have—but the mechanics proved difficult until a brilliant young mathematician at MIT, Norbert Wiener, devised a useful method.

  If the sun were a coolly radioactive metal ball a few inches across, with neutrons rattling about inside, it would start to look like a miniaturized version of the same problem. For a while this approach proved useful. Past a certain point, however, it broke down. Too many idealizing assumptions had to be made. In a real bomb, cobbled together from mostly purified uranium, surrounded by a shell of neutron-reflecting metal, the messy realities would defy the most advanced mathematics available. Neutrons would strike other neutrons with a wide range of possible energies. They might not scatter in every direction with equal probability. The bomb might not be a perfect sphere. The difference between these realities and the traditional oversimplifications arose in the first major problem assigned to Feynman’s group. Bethe had told them to evaluate an idea of Teller’s, the possibility of replacing pure uranium metal with uranium hydride, a compound of uranium and hydrogen. The hydride seemed to have advantages. For one, the neutron-slowing hydrogen would be built into the bomb material; less uranium would be needed. On the other hand, the substance was pyrophoric—it tended to burst spontaneously into flame. When the Los Alamos metallurgists got down to the work of making hydride chunks for testing, they set off as many as half a dozen small uranium fires a week. The hydride problem had one virtue. It pushed the theorists past the limits of their methods of calculating critical masses. To make a sound judgment of Teller’s idea they would have to invent new techniques. Before they considered the hydride, they had got by with methods based on an approximation of Fermi’s. They been able to assume, among other things, that neutrons would travel at a single characteristic velocity. In pure metal, or in the slow reaction of the water boiler, that assumption seemed to work out well enough. But in the odd atomic landscape of the hydride, with its molecules of giant uranium atoms bonded to two or three tiny hydrogen atoms, neutrons would fly about at every conceivable velocity, from very fast to very slow. No one had yet invented a way of computing critical mass when the velocities spread over such a wide range. Feynman solved that problem with a pair of approximations that worked like pincers. The method produced outer bounds for the answer: one estimate known to be too large and another known to be too small. The experience of actual computation showed that this would suffice: the pair of approximations were so close together that they gave an answer as accurate as was needed. As he drove the men in his group toward a new understanding of criticality (poaching sneakily, it seemed to them, on the territory of Serber’s group, T-2), he delivered up a series of insights that struck even Welton, who understood him best, as mystical. One day he declared that the whole problem would be solved if they could produce a table of so-called eigenvalues, characteristic values of energies, for the simplified model that T-2 had been using. That seemed an impossible leap, and the group said so, but they soon found that he was right again. For Teller’s scheme, the new model was fatal. The hydride was a dead end. Pure uranium and plutonium proved far more efficient in propagating a chain reaction.

  In this way, amid these clusters of scientists, the theory of diffusion underwent a kind of scrutiny with few precedents in the annals of science. Elegant textbook formulations were examined, improved, and then discarded altogether. In their place came pragmatic methodologies, gimmicks with patches. The textbook equations had exact solutions, at least for special cases. In the reality of Los Alamos, the special cases were useless. In Feynman’s Los Alamos work, especially, an accommodation with uncertainty became a running theme. Few other scientists filled the foreground of their papers with such blunt acknowledgments of what was not known: “unfortunately cannot be expected to be as accurate”; “Unfortunately the figures contained herein cannot be considered as ‘correct’”; “These methods are not exact.” Every practical scientist learned early to include error ranges in their calculations; they learned to internalize the knowledge that three miles times 1.852 kilometers per mile equals five and a half kilometers, not 5.556 kilometers. Precision only dissipates, like energy in an engine governed by the second law of thermodynamics. Feynman often found himself not just accepting the process of approximation but manipulating it as a tool, employing it in the creation of theorems. Always he stressed ease of use: “… an interesting theorem was found to be extremely useful in obtaining approximate expressions … it does permit, in many cases, a simpler derivation or understanding …”; “… in all cases of interest thus far investigated … accuracy has been found ample … extremely simple for computation and, once mastered, quite simple to use in thinking about a wide variety of neutron problems.” Theorems as theorems, or objects of mathematical beauty, had never been so unappealing as at Los Alamos. Theorems as tools had never been so valued. Again and again the theorists had to devise equations with no hope of exact solution, equations that sentenced them to countless hours of laborious computation with nothing at the end but an approximation. When they were done, the body of diffusion theory had become a hodgepodge. The state of knowledge was written in no one place, but it was more practical than ever before.

  For Feynman, thinking in his spare time about the pure theory of particles and light, diffusion dovetailed peculiarly with quantum mechanics. The traditional diffusion equa
tion bore a family resemblance to the standard Schrödinger equation; the crucial difference lay in a single exponent, where the quantum mechanical version was an imaginary factor, i. Lacking that i, diffusion was motion without inertia, motion without momentum. Individual molecules of perfume carry inertia, but their aggregate wafting through air, the sum of innumerable random collisions, does not. With the i, quantum mechanics could incorporate inertia, a particle’s memory of its past velocity. The imaginary factor in the exponent mingled velocity and time in the necessary way. In a sense, quantum mechanics was diffusion in imaginary time.

  The difficulties of calculating practical diffusion problems forced the Los Alamos theorists into an untraditional approach. Instead of solving neat differential equations, they had to break the physics into steps and solve the problem numerically, in small increments of time. The focus of attention was pushed back down to the microscopic level of individual neutrons following individual paths. Feynman’s quantum mechanics was evolving along strikingly similar lines. His private work, like the diffusion work, embodied an abandonment of a too simple, too special differential approach; the emphasis on step-by-step computation; and above all the summing of paths and probabilities.

  Computing by Brain

  Walking around the hastily built wooden barracks that housed the soul of the atomic bomb project in 1943 and 1944, a scientist would see dozens of men laboring over computation. Everyone calculated. The theoretical department was home to some of the world’s masters of mental arithmetic, a martial art shortly to go the way of jiujitsu. Any morning might find men such as Bethe, Fermi, and John von Neumann together in a single small room where they would spit out numbers in a rapid-fire calculation of pressure waves. Bethe’s deputy, Weisskopf, specialized in a particularly oracular sort of guesswork; his office became known as the Cave of the Hot Winds, producing, on demand, unjustifiably accurate cross sections (shorthand for the characteristic probabilities of particle collisions in various substances and circumstances). The scientists computed everything from the shapes of explosions to the potency of Oppenheimer’s cocktails, first with rough guesses and then, when necessary, with a precision that might take weeks. They estimated by seat of the pants, as a cook who wants one-third cup of wine might fill half a juice glass and correct with an extra splash. Anyone who calculated logarithms by mentally interpolating between the entries in a standard table—a technique that began to vanish thirty years later, when inexpensive electronic calculators made it obsolete—learned to estimate this way, using some unconscious feeling for the right curve. Feynman had a toolbox of such curves in his head, precalibrated. His Los Alamos colleagues were sometimes amused to hear him, when thinking out loud, howl a sort of whooping glissando when he meant, this rises exponentially; a different sound signified arithmetically. When he started managing groups of people who handled laborious computation, he developed a reputation for glancing over people’s shoulders and stabbing his finger at each error: “That’s wrong.” His staff would ask why he was putting them to such labor if he already knew the answers. He told them he could spot wrong results even when he had no idea what was right—something about the smoothness of the numbers or the relationships between them. Yet unconscious estimating was not really his style. He liked to know what he was doing. He would rummage through his toolbox for an analytical gimmick, the right key or lock pick to slip open a complicated integral. Or he would try various simplifying assumptions: Suppose we treat some quantity as infinitesimal. He would allow an error and then measure the bounds of the error precisely.

  It seemed to colleagues that some of his computation was a matter of conscious reputation building. One day Feynman, who had made a point of considering watches to be affectations, received a pocket watch from his father. He wore it proudly, and his friends began to needle him; they asked the time at every opportunity, until he began responding, with a glance at the watch: “Well, four hours and twenty minutes ago it was twelve before noon,” or “In three hours and forty-nine minutes it will be two seventeen.” Few caught on. He was doing no arithmetic at all. Rather, he had designed a simple parlor trick in the spirit of gauge theories to come. Each morning he would turn his watch to a fixed offset from the true time—three hours and forty-nine minutes fast one day; the next day four hours and twenty minutes slow. He had only to remember one number and read the other directly from the watch. (This was the same Feynman who, years later, trying to describe to a layman the intricate shiftings of time and orientation on which theoretical physics depended, said, “You know how it is with daylight saving time? Well, physics has a dozen kinds of daylight saving.”)

  When Bethe and Feynman went up against each other in games of calculating, they competed with special pleasure. Onlookers were often surprised, and not because the upstart Feynman bested his famous elder. On the contrary, more often the slow-speaking Bethe tended to outcompute Feynman. Early in the project they were working together on a formula that required the square of 48. Feynman reached across his desk for the Marchant mechanical calculator.

  Bethe said, “It’s twenty-three hundred.”

  Feynman started to punch the keys anyway. “You want to know exactly?” Bethe said. “It’s twenty-three hundred and four. Don’t you know how to take squares of numbers near fifty?” He explained the trick. Fifty squared is 2,500 (no thinking needed). For numbers a few more or less than 50, the approximate square is that many hundreds more or less than 2,500. Because 48 is 2 less than 50, 48 squared is 200 less than 2,500—thus 2,300. To make a final tiny correction to the precise answer, just take that difference again—2—and square it. Thus 2,304.

  Feynman had internalized an apparatus for handling far more difficult calculations. But Bethe impressed him with a mastery of mental arithmetic that showed he had built up a huge repertoire of these easy tricks, enough to cover the whole landscape of small numbers. An intricate web of knowledge underlay the techniques. Bethe knew instinctively, as did Feynman, that the difference between two successive squares is always an odd number, the sum of the numbers being squared. That fact, and the fact that 50 is half of 100, gave rise to the squares-near-fifty trick. A few minutes later they needed the cube root of 2½. The mechanical calculators could not handle cube roots directly, but there was a look-up chart to help. Feynman barely had time to open the drawer and reach for the chart before he heard Bethe say, “That’s 1.35.” Like an alcoholic who plants bottles within arm’s reach of every chair in the house, Bethe had stored away a device for anywhere he landed in the realm of numbers. He knew tables of logarithms and he could interpolate with unerring accuracy. Feynman’s own mastery of calculating had taken a different path. He knew how to compute series and derive trigonometric functions, and how to visualize the relationships between them. He had mastered mental tricks covering the deeper landscape of algebraic analysis—differentiating and integrating equations of the kind that lurk dragonlike in the last chapters of calculus texts. He was continually put to the test. The theoretical division sometimes seemed like the information desk at a slightly exotic library. The phone would ring and a voice would ask, “What is the sum of the series 1 + (½)4 + (⅓)4 + (¼)4 + … ?”

  “How accurate do you want it?” Feynman replied.

  “One percent will be fine.”

  “Okay,” Feynman said. “One point oh eight.” He had simply added the first four terms in his head—that was enough for two decimal places.

  Now the voice asked for an exact answer. “You don’t need the exact answer,” Feynman said.

  “Yeah, but I know it can be done.”

  So Feynman told him. “All right. It’s pi to the fourth over ninety.”

  He and Bethe both saw their talents as labor-saving devices. It was also a form of jousting. At lunch one day, feeling even more ebullient than usual, he challenged the table to a competition. He bet that he could solve any problem within sixty seconds, to within ten percent accuracy, that could be stated in ten seconds. Ten percent was a broad margi
n, and choosing a suitable problem was hard. Under pressure, his friends found themselves unable to stump him. The most challenging problem anyone could produce was: Find the tenth binomial coefficient in the expansion of (1 + x)20. Feynman solved that just before the clock ran out. Then Paul Olum spoke up. He had jousted with Feynman before, and this time he was ready. He demanded the tangent of ten to the hundredth. The competition was over. Feynman would essentially have had to divide one by ? and throw out the first one hundred digits of the result—which would mean knowing the one-hundredth decimal digit of ?. Even Feynman could not produce that on short notice.

  He integrated. He solved equations taking the spirit of infinite summation into more difficult realms. Some of these perilous, nontextbook, nonlinear equations could be integrated through just the right combination of mental gimmicks. Others could not be integrated exactly. One could plug in numbers, make estimates, calculate a little, make new estimates, extrapolate a little. One might visualize a polynomial expression to approximate the desired curve. Then one might try to see whether the leftover error could be managed. One day, making his rounds, Feynman found a man struggling with an especially complicated varietal, a nonlinear three-and-a-half-order equation. There was a business of integrating three times and figuring out a one-half derivative—and in the end Feynman invented a shortcut, a numerical method for taking three integrals at once and a half integral besides, all more accurately than had been thought possible. Similarly, working with Bethe, he invented a new and general method of solving third-order differential equations. Second order had been manageable for several centuries. Feynman’s invention was precise and practical. It was also doomed to a quick obsolescence in an age of machine computation, as was, for that matter, the skill of mental arithmetic that did so much to establish Feynman’s legend.