Page 32 of Genius


  Physicists made a nervous truce with their own inability to construct unambiguous mental models for events in the very small world. When they used such words as wave or particle—and they had to use both—there was a silent, disclaiming asterisk, as if to say: not really. As a consequence, they recognized that their profession’s relationship to reality had changed. Gone was the luxury of supposing that a single reality existed, that the human mind had reasonably clear access to it, and that the scientist could explain it. It was clear now that the scientist’s work product—a theory, a model—interpreted experience and construed experience in a way that was always provisional. Scientists relied on such models as intensely as someone crossing a darkened room relies on a conjured visual memory. Still, physicists now began to say explicitly that they were creating a language—as though they were more like literary critics than investigators. “It is wrong to think that the task of physics is to find out how nature is,” said Bohr. “Physics concerns only what we can say about nature.” This had always been true. Never before, though, had nature so pointedly rubbed physicists’ noses in it.

  Yet in the long run most physicists could not eschew visualization. They found that they needed imagery. A certain kind of pragmatic, working theorist valued a style of thinking based on a kind of seeing and feeling. That was what physical intuition meant. Feynman said to Dyson, and Dyson agreed, that Einstein’s great work had sprung from physical intuition and that when Einstein stopped creating it was because “he stopped thinking in concrete physical images and became a manipulator of equations.” Intuition was not just visual but also auditory and kinesthetic. Those who watched Feynman in moments of intense concentration came away with a strong, even disturbing sense of the physicality of the process, as though his brain did not stop with the gray matter but extended through every muscle in his body. A Cornell dormitory neighbor opened Feynman’s door to find him rolling about on the floor beside his bed as he worked on a problem. When he was not rolling about, he was at least murmuring rhythmically or drumming with his fingertips. In part the process of scientific visualization is a process of putting oneself in nature: in an imagined beam of light, in a relativistic electron. As the historian of science Gerald Holton put it, “there is a mutual mapping of the mind … and of the laws of nature.” For Feynman it was a nature whose elements interacted with palpable, variegated, fluttering rhythms.

  He thought about it himself. Once—uninterested though he was in fiction or poetry—he carefully copied out a verse fragment by Vladimir Nabokov: “Space is a swarming in the eyes; and time a singing in the ears.”

  “Visualization—you keep repeating that,” he said to another historian, Silvan S. Schweber, who was trying to interview him.

  What I am really trying to do is bring birth to clarity, which is really a half-assedly thought-out pictorial semi-vision thing. I would see the jiggle-jiggle-jiggle or the wiggle of the path. Even now when I talk about the influence functional, I see the coupling and I take this turn—like as if there was a big bag of stuff—and try to collect it away and to push it. It’s all visual. It’s hard to explain.

  “In some ways you see the answer——?” asked Schweber.

  ——the character of the answer, absolutely. An inspired method of picturing, I guess. Ordinarily I try to get the pictures clearer, but in the end the mathematics can take over and be more efficient in communicating the idea of the picture.

  In certain particular problems that I have done it was necessary to continue the development of the picture as the method before the mathematics could be really done.

  The field itself presented the ultimate challenge. Feynman once told students, “I have no picture of this electromagnetic field that is in any sense accurate.” In seeking to analyze his own way of visualizing the unvisualizable he had learned an odd lesson. The mathematical symbols he used every day had become entangled with his physical sensations of motion, pressure, acceleration … Somehow he invested the abstract symbols with physical meaning, even as he gained control over his raw physical intuition by applying his knowledge of how the symbols could be manipulated.

  When I start describing the magnetic field moving through space, I speak of the E- and B- fields and wave my arms and you may imagine that I can see them. I’ll tell you what I see. I see some kind of vague, shadowy, wiggling lines … and perhaps some of the lines have arrows on them—an arrow here or there which disappears when I look too closely… . I have a terrible confusion between the symbols I use to describe the objects and the objects themselves.

  Yet he could not retreat into the mathematics alone. Mathematically the field was an array of numbers associated with every point in space. That, he told his students, he could not imagine at all.

  Visualization did not have to mean diagrams. A complex, half-conscious, kinesthetic intuition about physics did not necessarily lend itself to translation into the form of a stick-figure drawing. Nor did a diagram necessarily express a physical picture. It could merely be a chart or a memory aid. At any rate diagrams had been rare in the literature of quantum physics. One typical example used a ladder of horizontal lines to represent the notion of energy levels in the atom:

  The “quantum jump” visualized as a sort of ladder.

  The quantum jump from one level down to another accompanied the emission of a photon; the absorption of a photon would bring a jump upward. No depiction of the photons appeared in these diagrams; nor in another, more awkward schematic for the same process.

  Feynman never used such diagrams, but he often filled his note pages with drawings of a different sort, recalling the space-time paths that had been so crucial a feature of his Princeton work with Wheeler. He drew the paths of electrons as straight lines, moving across the page to represent motion through space and up the page to represent progress through time. At first he, too, left the emission of a photon out of his pictures: that event would appear as the deflection of an electron from one path to another. The absence of photons did reflect an implicit choice from among the available pictorial landscapes: Feynman was still thinking mainly in terms of electrons interacting with the electromagnetic field as a field, rather than with the field as incarnated in the form of particles, photons.

  In mid-1947 friends of Feynman persuaded him—threats and cajoling were required—to write for publication the theoretical ideas they kept hearing him explain. When he finally did, he used no diagrams. The result was partly a reworking of his thesis, but it also showed the maturing and broadening of his command of the issues of quantum electrodynamics. He expressed the tenets of his new vision with an unabashed plainness. For some physicists this would be the most influential set of ideas Feynman ever published.

  He said he had developed an alternative formulation of quantum mechanics to add to the pair of formulations produced two decades before by Schrödinger and Heisenberg. He defined the notion of a probability amplitude for a space-time path. In the classical world one could merely add probabilities: a batter’s on-base percentage is the 30 percent probability of a base hit plus the 10 percent probability of a base on balls plus the 5 percent probability of an error … In the quantum world probabilities were expressed as complex numbers, numbers with both a quantity and a phase, and these so-called amplitudes were squared to produce a probability. This was the mathematical procedure necessary to capture the wavelike aspects of particle behavior. Waves interfered with one another. They could enhance one another or cancel one another, depending on whether they were in or out of phase. Light could combine with light to produce darkness, alternating with bands of brightness, just as water waves combining in a lake could produce doubly deep troughs and high crests.

  Feynman described for his readers what they already knew as the canonical thought experiment of quantum mechanics, the so-called two-slit experiment. For Niels Bohr it had illustrated the inescapable paradox of the wave-particle duality. A beam of electrons (for example) passes through two slits in a screen. A detector on the far si
de records their arrival. If the detector is sensitive enough, it will record individual events, like bullets striking; it might be designed to click as a Geiger counter clicks. But a peculiar spatial pattern emerges: the probabilities of electrons arriving at different places vary in the distinct manner of diffraction, precisely as though waves were passing through the slit and interfering with one another. Particles or waves? Sealing the paradox, quantum mechanically, is a conclusion that one cannot escape: that each electron “sees,” or “knows about,” or somehow goes through both slits. Classically a particle would have to go through one slit or the other. Yet in this experiment, if the slits are alternately closed, so that one electron must go through A and the next through B, the interference pattern vanishes. If one tries to glimpse the particle as it passes through one slit or the other, perhaps by placing a detector at a slit, again one finds that the mere presence of the detector destroys the pattern.

  Probability amplitudes were normally associated with the likelihood of a particle’s arriving at a certain place at a certain time. Feynman said he would associate the probability amplitude “with an entire motion of a particle”—with a path. He stated the central principle of his quantum mechanics: The probability of an event which can happen in several different ways is the absolute square of a sum of complex contributions, one from each alternative way. These complex numbers, these amplitudes, were written in terms of the classical action; he showed how to calculate the action for each path as a certain integral. And he established that this peculiar approach was mathematically equivalent to the standard Schrödinger wave function, so different in spirit.

  The central mystery of quantum mechanics—the one to which all others could ultimately be reduced.

  A gun (obeying the classical laws) sprays bullets toward a target. First they must pass through a screen with two slits. The pattern they make shows how their probability of arrival varies from place to place. They are likeliest to strike directly behind one of the slits. The pattern happens to be simply the sum of the patterns for each slit considered separately: if half the bullets were fired with only the left slit open and then half were fired with just the right slit open, the result would be the same.

  With waves, however, the result is very different, because of interference. If the slits were opened one at a time, the pattern would resemble the pattern for bullets: two distinct peaks. But when the slits are open at the same time, the waves pass through both slits at once and interfere with each other: where they are in phase they reinforce each other; where they are out of phase they cancel each other out.

  Now the quantum paradox: Particles, like bullets, strike the target one at a time. Yet, like waves, they create an interference pattern. If each particle passes individually through one slit, with what does it “interfere”? Although each electron arrives at the target at a single place and a single time, it seems that each has passed through—or somehow felt the presence of—both slits at once.

  The Physical Review had printed nothing by Feynman since his undergraduate thesis almost a decade before. To his dismay, the editors now rejected this paper. Bethe helped him rewrite it, showing him how to spell out for the reader what was old and what was new, and he tried the more retrospective journal Reviews of Modern Physics, where finally it appeared the next spring under the title “Space-Time Approach to Non-Relativistic Quantum Mechanics.” He plainly admitted that his reformulation of quantum mechanics contained nothing new in the way of results, and he stated even more plainly where he thought the merit lay: “There is a pleasure in recognizing old things from a new point of view. Also, there are problems for which the new point of view offers a distinct advantage.” (For example, when two particles interacted, it became possible to avoid the laborious bookkeeping of two different coordinate systems.) His readers—and at first they were few—found no fancy mathematics, just this shift of vision, a bit of physical intuition laid atop a foundation of clean, classical mechanics.

  Few immediately recognized the power of Feynman’s vision. One who did was the Polish mathematician Mark Kac, who heard Feynman describe his path integrals at Cornell and immediately recognized a kinship with a problem in probability theory. He had been trying to extend the work of Norbert Wiener on Brownian motion, the herky-jerky random motion in the diffusion processes that so dominated Feynman’s theoretical work at Los Alamos. Wiener, too, had created integrals that summed many possible paths a particle could take, but with a crucial difference in the handling of time. Within days of Feynman’s talk, Kac had created a new formula, the Feynman-Kac Formula, that became one of the most ubiquitous of mathematical tools, linking the applications of probability and quantum mechanics. He later felt that he was better known as the K in F-K than for anything else in his career.

  Even to physicists well accustomed to theoretical constructions with awkward philosophical implications, Feynman’s summings of paths—path integrals—seemed bizarre. They conjured a universe where no potential goes uncounted; where nothing is latent, everything alive; where every possibility makes itself felt in the outcome. He had expressed his conception to Dyson:

  The electron does anything it likes. It just goes in any direction at any speed, forward or backward in time, however it likes, and then you add up the amplitudes and it gives you the wave function.

  Dyson gleefully retorted that he was crazy. Still, Feynman had caught the intuitive essence of the two-slit experiment, where an electron seems aware of every possibility.

  Feynman’s path-integral view of nature, his vision of a “sum over histories,” was also the principle of least action, the principle of least time, reborn. Feynman felt that he had uncovered the deep laws that gave rise to the centuries-old principles of mechanics and optics discovered by Christiaan Huygens, Pierre de Fermat, and Joseph-Louis Lagrange. How does a thrown ball know to find the particular arc whose path minimizes action? How does a ray of light know to find the path that minimizes time? Feynman answered these questions with images that served not only for the novel mysteries of quantum mechanics but for the treacherously innocent exercises posed for any beginning physics student. Light seems to angle neatly as it passes from air to water. It seems to bounce like a billiard ball off the surface of a mirror. It seems to travel in straight lines. These paths—the paths of least time—are special because they tend to be where the contributions of nearby paths are most closely in phase and most reinforce one another. Far from the path of least time—at the distant edge of a mirror, for example—paths tend to cancel one another out. Yet light does take every possible path, Feynman showed. The seemingly irrelevant paths are always lurking in the background, making their contributions, ready to make their presence felt in such phenomena as mirages and diffraction gratings.

  Optics students learned alternative explanations for such phenomena in terms of waves like those undulating through water and air. Feynman was—with finality—eliminating the wave viewpoint altogether. Waviness was built into the phases carried by amplitudes, like little clocks. Once, with Wheeler, he had dreamed of eliminating the field itself. That idea had proved fanciful. The field had lodged itself deeply in the consciousness of physicists. It was indispensable and it was multiplying—a new particle, such as the meson, meant a new field, like a new plastic overlay, of which the particle was a quantized manifestation. Still, Feynman’s theory retained the mark of its original scaffolding, though the scaffolding was long discarded. The actors were, more clearly than ever, particles. That became an attractive feature for physicists seeking help in visualization, in an experimental world dominated more and more by the cloud trails, the nomenclature, the behaviorism of particles.

  Schwinger’s Glory

  Feynman’s path integrals belonged to a loose kit of ideas and methods, a private physics that he had assembled but not organized. Much relied on guesswork or, as he said, “semi-empirical shenanigans.” It was all hodgepodge and purpose-driven, and he could barely communicate it, let alone prove it, even to his most s
ympathetic listeners, Bethe and Dyson. In the fall of 1947 he attended a formal lecture by Bethe on his approach to the Lamb shift. When Bethe concluded by stressing the need for a more reliable way of making the theory finite, a way that would observe the requirements of relativity, Feynman realized that he could compute the necessary correction. He promised Bethe an answer by the next morning.

  By morning he realized that he did not know enough about Bethe’s calculation of the electron’s self-energy to translate his correction into the normal language of physics. They stood together at the blackboard for a while, Bethe explaining his calculation, Feynman trying to translate his technique, and the best answer they could reach diverged not modestly, like Bethe’s, but horrendously. Feynman, thinking about the problem physically, was sure it should not diverge at all.

  In the days that followed, he taught himself about self-energy all over again. When he reexpressed his equations in terms of the observed, “dressed” mass of the electron instead of the theoretical, “bare” mass, the correction came out just as he had thought, converging to a finite answer. Meanwhile, glowing news of Schwinger’s progress was reaching Ithaca from Cambridge via Weisskopf and Bethe. When Feynman heard late in the fall that Schwinger had worked out a calculation for the magnetic moment of the electron—another tiny experimental anomaly newly found in Rabi’s laboratory—he solved the problem, too. Schwinger’s elaborate piece of calculating gave leading physicists a conviction that theory was once again on the march. “God is great!” Rabi wrote Bethe with characteristic wryness, and Bethe replied: “It is certainly wonderful how these experiments of yours have given a completely new slant to a theory and how the theory has blossomed out in a relatively short time. It is as exciting as in the early days of quantum mechanics.”