1. Vauxia (gracile) 2. Branchiocaris 3. Opabinia 4. Amiskwia 5. Vauxia (robust) 6. Molaria 7. Aysheaia
11. Micromitra 12. Echmatocrinus 13. Chancelloria 14. Pirania 15. Choia 16. Leptomitus 17. Dinomischus 18. Wiwaxia 19. Naraoia 20. Hyolithes 21. Habelia 22. Emeraldella 23. Burgessia 24. Leanchoilia 25. Sanctacaris 26. Ottoia 27. Louisella 28. Actaeus 29. Yohoia 30. Peronochaeta 31. Selkirkia 32. Ancalagon 33. Burgessochaeta 34. Sidneyia 35. Odaraia 36. Eiffelia 37. Mackenzia 38. Odontogriphus 39. Hallucigenia 40. Elrathia 41. Anomalocaris 42. Lingulella 43. Scenella 44. Canadaspis 45 . Marrella 46. Olenoides
More curiously, all major stages in organizing animal life's multicellular architecture then occurred in a short period beginning less than 600 million years ago and ending by about 530 million years ago - and the steps within this sequence are also discontinuous and episodic, not gradually accumulative. The first fauna, called Ediacaran to honor the Australian locality of its initial discovery but now known from rocks on all continents, consists of highly flattened fronds, sheets and circlets composed of numerous slender segments quilted together. The nature of the Ediacaran fauna is now a subject of intense discussion. These creatures do not seem to be simple precursors of later forms. They may constitute a separate and failed experiment in animal life, or they may represent a full range of diploblastic (two-layered) organization, of which the modern phylum Cnidaria (corals, jellyfishes and their allies) remains as a small and much altered remnant.
In any case, they apparently died out well before the Cambrian biota evolved. The Cambrian then began with an assemblage of bits and pieces, frustratingly difficult to interpret, called the "small shelly fauna." The subsequent main pulse, starting about 530 million years ago, constitutes the famous Cambrian explosion, during which all but one modern phylum of animal ]ife made a first appearance in the fossil record. ( Geologists had previously allowed up to 40 million years for this event, but an elegant study, published in 1993, clearly restricts this period of phyletic flowering to a mere five million years.) The Bryozoa, a group of sessile and colonial marine organisms, do not arise until the beginning of the subsequent, Ordovician period, but this apparent delay may be an artifact of failure to discover Cambrian representatives.
GREAT DIVERSITY quickly evolved at the dawn of multicellular animal life during the Cambrian period (530 million years ago). The creatures shown here are all found in the Middle Cambrian Burgess Shale fauna of Canada. They include some familiar forms (sponges, brachiopods) that have survived. But many creatures (such as the giant Anomalocaris at the lower right, largest of all the Cambrian animals) did not live for long and are so anatomically peculiar (relative to survivors) that we cannot classify them among known phyla.
Although interesting and portentous events have occurred since, from the flowering of dinosaurs to the origin of human consciousness, we do not exaggerate greatly in stating that the subsequent history of animal life amounts to little more than variations on anatomical themes established during the Cambrian explosion within five million years. Three billion years of unicellularity, followed by five million years of intense creativity and then capped by more than 500 million years of variation on set anatomical themes can scarcely be read as a predictable, inexorable or continuous trend toward progress or increasing complexity.
We do not know why the Cambrian explosion could establish all major anatomical designs so quickly. An "external" explanation based on ecology seems attractive: the Cambrian explosion represents an initial filling of the "ecological barrel" of niches for multicellular organisms, and any experiment found a space. The barrel has never emptied since; even the great mass extinctions left a few species in each principal role, and their occupation of ecological space forecloses opportunity for fundamental novelties. But an "internal" explanation based on genetics and development also seems necessary as a complement: the earliest multicellular animals may have maintained a flexibility for genetic change and embryological transformation that became greatly reduced as organisms "locked in" to a set of stable and successful designs.
In any case, this initial period of both internal and external flexibility yielded a range of invertebrate anatomies that may have exceeded (in just a few million years of production) the full scope of animal form in all the earth's environments today (after more than 500 million years of additional time for further expansion). Scientists are divided on this question. Some claim that the anatomical range of this initial explosion exceeded that of modern life, as many early experiments died out and no new phyla have ever arisen. But scientists most strongly opposed to this view allow that Cambrian diversity at least equaled the modern range - so even the most cautious opinion holds that 500 million subsequent years of opportunity have not expanded the Cambrian range, achieved in just five million years. The Cambrian explosion was the most remarkable and puzzling event in the history of life.
Moreover, we do not know why most of the early experiments died, while a few survived to become our modern phyla. It is tempting to say that the victors won by virtue of greater anatomical complexity, better ecological fit or some other predictable feature of conventional Darwinian struggle. But no recognized traits unite the victors, and the radical alternative must be entertained that each early experiment received little more than the equivalent of a ticket in the largest lottery ever played out on our planet - and that each surviving lineage, including our own phylum of vertebrates, inhabits the earth today more by the luck of the draw than by any predictable struggle for existence. The history of multicellular animal life may be more a story of great reduction in initial possibilities, with stabilization of lucky survivors, than a conventional tale of steady ecological expansion and morphological progress in complexity.
Finally, this pattern of long stasis, with change concentrated in rapid episodes that establish new equilibria, may be quite general at several scales of time and magnitude, forming a kind of fractal pattern in self-similarity. According to the punctuated equilibrium model of speciation, trends within lineages occur by accumulated episodes of geologically instantaneous speciation, rather than by gradual change within continuous populations (like climbing a staircase rather than rolling a ball up an inclined plane).
Even if evolutionary theory implied a potential internal direction for life's pathway (although previous facts and arguments in this article cast doubt on such a claim), the occasional imposition of a rapid and substantial, perhaps even truly catastrophic, change in environment would have intervened to stymie the pattern. These environ mental changes trigger mass extinction of a high percentage of the earth's spe
CLASSICAL REPRESENTATIONS OF LIFE'S HISTORY reveal the severe biases of viewing evolution as embodying a central principle of progress and complexification. In these paintings by Charles R. Knight from a 1942 issue of National Geographic, the first panel shows invertebrates of the Burgess Shale. But as soon as fishes evolve (panel 2), no subsequent scene ever shows another invertebrate, although they did not go away or stop evolving. When land vertebrates arise (panel 3), we never see another fish, even though return of land vertebrate lineages to the sea may be depicted (panel 4). The sequence always ends with mammals (panel 5) - even though fishes, invertebrates and reptiles are still thriving - and, of course, humans (panel 6).
cies and may so derail any internal direction and so reset the pathway that the net pattern of life's history looks more capricious and concentrated in episodes than steady and directional. Mass extinctions have been recognized since the dawn of paleontology; the major divisions of the geologic time scale were established at boundaries marked by such events. But until the revival of interest that began in the late 1970S, most paleontologists treated mass extinctions only as intensifications of ordinary events, leading (at most) to a speeding up of tendencies that pervaded normal times. In this gradualistic theory of mass extinction, these events really took a few million years to unfold (with the appearance of suddenness interpreted as an artifact of an imperfect fossil record), and they only
made the ordinary occur faster (more intense Darwinian competition in tough times, for example, leading to even more efficient replacement of less adapted by superior forms).
The reinterpretation of mass extinctions as central to life's pathway and radically different in effect began with the presentation of data by Luis and Walter Alvarez in 1979, indicating that the impact of a large extraterrestrial object (they suggested an asteroid seven to 10 kilometers in diameter) set off the last great extinction at the Cretaceous- Tertiary boundary 65 million years ago. Although the Alvarez hypothesis initially received very skeptical treatment from scientists (a proper approach to highly unconventional explanations), the case now seems virtually proved by discovery of the "smoking gun," a crater of appropriate size and age located off the Yucatan peninsula in Mexico.
This reawakening of interest also inspired paleontologists to tabulate the data of mass extinction more rigorously. Work by David M. Raup, J. J. Sepkoski, Jr., and David Jablonski of the University of Chicago has established that multicellular animal life experienced five major (end of Ordovician, late Devonian, end of Permian, end of Triassic and end of Cretaceous) and many minor mass extinctions during its 530 million- year history. We have no clear evidence that any but the last of these events was triggered by catastrophic impact, but such careful study leads to the general conclusion that mass extinctions were more frequent, more rapid, more extensive in magnitude and more different in effect than paleontologists had previously realized. These four properties encompass the radical implications of mass extinction for understanding life's pathway as more contingent and chancy than predictable and directional.
Mass extinctions are not random in their impact on life. Some lineages succumb and others survive-as sensible outcomes based on presence or absence of evolved features. But especially if the triggering cause of extinction be sudden and catastrophic, the reasons for life or death may be random with respect to the original value of key features when first evolved in Darwinian struggles of normal times. This "different rules" model of mass extinction imparts a quirky and unpredictable character to life's pathway based on the evident claim that lineages cannot anticipate future contingencies of such magnitude and different operation.
To cite two examples from the impact- triggered Cretaceous-Tertiary extinction 65 million years ago: First, an important study published in 1986 noted that diatoms survived the extinction far better than other single-celled plankton (primarily coccoliths and radiolaria). This study found that many diatoms had evolved a strategy of dormancy by encystrnent, perhaps to survive through seasonal periods of unfavorable conditions (months of darkness in polar species as otherwise fatal to these photosynthesizing cells; sporadic availability of silica needed to construct their skeletons). Other planktonic cells had not evolved any mechanisms for dormancy. If the terminal Cretaceous impact produced a dust cloud that blocked light for several months or longer (one popular idea for a "killing scenario" in the extinction), then diatoms may have survived as a fortuitous result of dormancy mechanisms evolved for the entirely different function of weathering seasonal droughts in ordinary times. Diatoms are not superior to radiolaria or other plankton that succumbed in far greater numbers; they were simply fortunate to possess a favorable feature, evolved for other reasons, that fostered passage through the impact and its sequelae.
Second, we all know that dinosaurs perished in the end Cretaceous event and that mammals therefore rule the vertebrate world today. Most people assume that mammals prevailed in these tough times for some reason of general superiority over dinosaurs. But such a conclusion seems most unlikely. Mammals and dinosaurs had coexisted for 100 million years, and mammals had remained rat-sized or smaller, making no evolutionary "move" to oust dinosaurs. No good argument for mammalian prevalence by general superiority has ever been advanced, and fortuity seems far more likely. As one plausible argument, mammals may have survived partly as a result of their small size (with much larger, and therefore extinction- resistant, populations as a consequence, and less ecological specialization with more places to hide, so to speak). Small size may not have been a positive mammalian adaptation at all, but more a sign of inability ever to penetrate the dominant domain of dinosaurs. Yet this "negative" feature of normal times may be the key reason for mammalian survival and a prerequisite to my writing and your reading this article today.
Sigmund Freud often remarked that great revolutions in the history of science have but one common, and ironic, feature: they knock human arrogance off one pedestal after another of our previous conviction about our own self-importance. In Freud's three examples, Copernicus moved our home from center to periphery, Darwin then relegated us to "descent from an animal world"; and, finally (in one of the least modest statements of intellectual history), Freud himself discovered the unconscious and exploded the myth of a fully rational mind. In this wise and crucial sense, the Darwinian revolution remains woefully incomplete because, even though thinking humanity accepts the fact of evolution, most of us are still unwilling to abandon the comforting view that evolution means (or at least embodies a central principle of) progress defined to render the appearance of something like human consciousness either virtually inevitable or at least predictable. The pedestal is not smashed until we abandon progress or complexification as a central principle and come to entertain the strong possibility that H. sapiens is but a tiny, late-arising twig on life's enormously arborescent bush - a small bud that would almost surely not appear a second time if we could replant the bush from seed and let it grow again.
Primates are visual animals, and the pictures we draw betray our deepest convictions and display our current conceptual limitations. Artists have always painted the history of fossil life as a sequence from invertebrates, to fishes, to early terrestrial amphibians and reptiles, to dinosaurs, to mammals and, finally, to humans. There are no exceptions; all sequences painted since the inception of this genre in the 1850s follow the convention.
Yet we never stop to recognize the almost absurd biases coded into this universal mode. No scene ever shows another invertebrate after fishes evolved but invertebrates did not go away or stop evolving! After terrestrial reptiles emerge, no subsequent scene ever shows a fish (later oceanic tableaux depict only such returning reptiles as ichthyosaurs and plesiosaurs). But fishes did not stop evolving after one small lineage managed to invade the land. In fact, the major event in the evolution of fishes, the origin and rise to dominance of the teleosts, or modern bony fishes, occurred during the time of the dinosaurs and is therefore never shown at all in any of these sequences - even though teleosts include more than half of all species of vertebrates. Why should humans appear at the end of all sequences? Our order of primates is ancient among mammals, and many other successful lineages arose later than we did.
We will not smash Freud's pedestal and complete Darwin's revolution until we find, grasp and accept another way of drawing life's history. J.B.S. Haldane proclaimed nature "queerer than we can suppose," but these limits may only be socially imposed conceptual locks rather then inherent restrictions of our neurology. New icons might break the locks. Trees - or rather copiously and luxuriantly branching bushes - rather than ladders and sequences hold the key to this conceptual transition.
We must learn to depict the full range of variation, not just our parochial perception of the tiny right tail of most complex creatures. We must recognize that this tree may have contained a maximal number of branches near the beginning of multicellular life and that subsequent history is for the most part a process of elimination and lucky survivorship of a few, rather than continuous flowering, progress and expansion of a growing multitude. We must understand that little twigs are contingent nubbins, not predictable goals of the massive bush beneath. We must remember the greatest of all Biblical statements about wisdom: "She is a tree of life to them that lay hold upon her; and happy is every one that retaineth her."
FULL HOUSE
THE SPREAD OF EXCELLENCE FROM PLATO TO DARWIN
/>
STEPHEN JAY GOULD
Harmony Books New York
Copyright (c) 1996 by Stephen Jay Gould
All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.
Published by Harmony Rooks, a division of Crown Publishers, Inc., 201 East 50th Street. New York, New York 10022
Random House, Inc. New York, Toronto. Sydney. London, Auckland http://www.randomhouse.com/
HARMONY and colophon are trademarks of Crown Publishers, Inc.
Printed in the United States of America
Design by Lynne Amft
Chart illustrations by Bob Roman
Library of Congress Cataloging-in-Publication Data is available upon request.
ISBN 0-517-70394-7
10987654321
First Edition
_Grateful acknowledgment is made for permission to reprint or adapt the following:_
For Rhonda,
who is the embodiment of excellence
* * *
Das Ewig —Weibliche
zieht uns hinan