Page 24 of The Descent of Man


  Inheritance at Corresponding Seasons of the Year.—With animals in a state of nature innumerable instances occur of characters periodically appearing at different seasons. We see this with the horns of the stag, and with the fur of arctic animals which becomes thick and white during the winter. Numerous birds acquire bright colours and other decorations during the breeding-season alone. I can throw but little light on this form of inheritance from facts observed under domestication. Pallas states,356 that in Siberia domestic cattle and horses periodically become lighter-coloured during the winter; and I have observed a similar marked change of colour in certain ponies in England. Although I do not know that this tendency to assume a differently coloured coat during different seasons of the year is transmitted, yet it probably is so, as all shades of colour are strongly inherited by the horse. Nor is this form of inheritance, as limited by season, more remarkable than inheritance as limited by age or sex.

  Inheritance as Limited by Sex.—The equal transmission of characters to both, sexes is the commonest form of inheritance, at least with those animals which do not present strongly-marked sexual differences, and indeed with many of these. But characters are not rarely transferred exclusively to that sex, in which they first appeared. Ample evidence on this head has been advanced in my work on Variation under Domestica283tion; but a few instances may here be given. There are breeds of the sheep and goat, in which the horns of the male differ greatly in shape from those of the female; and these differences, acquired under domestication, are regularly transmitted to the same sex. With tortoise-shell cats the females alone, as a general rule, are thus coloured, the males being rusty-red. With most breeds of the fowl, the characters proper to each sex are transmitted to the same sex alone. So general is this form of transmission that it is an anomaly when we see in certain breeds variations transmitted equally to both sexes. There are also certain sub-breeds of the fowl in which the males can hardly be distinguished from each other, whilst the females differ considerably in colour. With the pigeon the sexes of the parent-species do not differ in any external character; nevertheless in certain domesticated breeds the male is differently coloured from the female.357 The wattle in the English Carrier pigeon and the crop in the Pouter are more highly developed in the male than in the female; and although these characters have been gained through long-continued selection by man, the difference between the two sexes is wholly due to the form of inheritance which has prevailed; for it has arisen, not from, but rather in opposition to, the wishes of the breeder.

  Most of our domestic races have been formed by the accumulation of many slight variations; and as some of the successive steps have been transmitted to one sex alone, and some to both sexes, we find in the different breeds of the same species all gradations between great sexual dissimilarity and complete similarity. In284stances have already been given with the breeds of the fowl and pigeon; and under nature analogous cases are of frequent occurrence. With animals under domestication, but whether under nature I will not venture to say, one sex may lose characters proper to it, and may thus come to resemble to a certain extent the opposite sex; for instance, the males of some breeds of the fowl have lost their masculine plumes and hackles. On the other hand the differences between the sexes may be increased under domestication, as with merino sheep, in which the ewes have lost their horns. Again, characters proper to one sex may suddenly appear in the other sex; as with those sub-breeds of the fowl in which the hens whilst young acquire spurs; or, as in certain Polish sub-breeds, in which the females, as there is reason to believe, originally acquired a crest, and subsequently transferred it to the males. All these cases are intelligible on the hypothesis of pangenesis; for they depend on the gemmules of certain units of the body, although present in both sexes, becoming through the influence of domestication dormant in the one sex; or if naturally dormant, becoming developed.

  There is one difficult question which it will be convenient to defer to a future chapter; namely, whether a character at first developed in both sexes, can be rendered through selection limited in its development to one sex alone. If, for instance, a breeder observed that some of his pigeons (in which species characters are usually transferred in an equal degree to both sexes) varied into pale blue; could he by long-continued selection make a breed, in which the males alone should be of this tint, whilst the females remained unchanged? I will here only say, that this, though perhaps not impossible, would be extremely difficult; for the natural result of breeding from the pale-blue males would be285 to change his whole stock, including both sexes, into this tint. If, however, variations of the desired tint appeared, which were from the first limited in their development to the male sex, there would not be the least difficulty in making a breed characterised by the two sexes being of a different colour, as indeed has been effected with a Belgian breed, in which the males alone are streaked with black. In a similar manner, if any variation appeared in a female pigeon, which was from the first sexually limited in its development, it would be easy to make a breed with the females alone thus characterised; but if the variation was not thus originally limited, the process would be extremely difficult, perhaps impossible.

  On the Relation between the period of Development of a Character and its transmission to one sex or to both sexes.—Why certain characters should be inherited by both sexes, and other characters by one sex alone, namely by that sex in which the character first appeared, is in most cases quite unknown. We cannot even conjecture why with certain sub-breeds of the pigeon, black striæ, though transmitted through the female, should be developed in the male alone, whilst every other character is equally transferred to both sexes. Why, again, with cats, the tortoise-shell colour should, with rare exceptions, be developed in the female alone. The very same characters, such as deficient or supernumerary digits, colour-blindness, &c., may with mankind be inherited by the males alone of one family, and in another family by the females alone, though in both cases transmitted through the opposite as well as the same sex.358 Although we are thus ignorant, two rules often hold good, namely 286that variations which, first appear in either sex at a late period of life, tend to be developed in the same sex alone; whilst variations which first appear early in life in either sex tend to be developed in both sexes. I am, however, far from supposing that this is the sole determining cause. As I have not elsewhere discussed this subject, and as it has an important bearing on sexual selection, I must here enter into lengthy and somewhat intricate details.

  It is in itself probable that any character appearing at an early age would tend to be inherited equally by both sexes, for the sexes do not differ much in constitution, before the power of reproduction is gained. On the other hand, after this power has been gained and the sexes have come to differ in constitution, the gemmules (if I may again use the language of pangenesis) which are cast off from each varying part in the one sex would be much more likely to possess the proper affinities for uniting with the tissues of the same sex, and thus becoming developed, than with those of the opposite sex.

  I was first led to infer that a relation of this kind exists, from the fact that whenever and in whatever manner the adult male has come to differ from the adult female, he differs in the same manner from the young of both sexes. The generality of this fact is quite remarkable: it holds good with almost all mammals, birds, amphibians, and fishes; also with many crustaceans, spiders and some few insects, namely certain orthoptera and libellulæ. In all these cases the variations, through the accumulation of which the male acquired his proper masculine characters, must have occurred at a somewhat late period of life; otherwise the young males would have been similarly characterised; and conformably with our rule, they are transmitted to287 and developed in the adult males alone. When, on the other hand, the adult male closely resembles the young of both sexes (these, with rare exceptions, being alike), he generally resembles the adult female; and in most of these cases the variations through which the young and old acquired their present characters
, probably occurred in conformity with our rule during youth. But there is here room for doubt, as characters are sometimes transferred to the offspring at an earlier age than that at which they first appeared in the parents, so that the parents may have varied when adult, and have transferred their characters to their offspring whilst young. There are, moreover, many animals, in which the two sexes closely resemble each other, and yet both differ from their young; and here the characters of the adults must have been acquired late in life; nevertheless, these characters in apparent contradiction to our rule, are transferred to both sexes. We must not, however, overlook the possibility or even probability of successive variations of the same nature sometimes occurring, under exposure to similar conditions, simultaneously in both sexes at a rather late period of life; and in this case the variations would be transferred to the offspring of both sexes at a corresponding late age; and there would be no real contradiction to our rule of the variations which occur late in life being transferred exclusively to the sex in which they first appeared. This latter rule seems to hold true more generally than the second rule, namely, that variations which occur in either sex early in life tend to be transferred to both sexes. As it was obviously impossible even to estimate in how large a number of cases throughout the animal kingdom these two propositions hold good, it occurred to me to investigate some striking or crucial instances, and to rely on the result.

  288An excellent case for investigation is afforded by the Deer Family. In all the species, excepting one, the horns are developed in the male alone, though certainly transmitted through the female, and capable of occasional abnormal development in her. In the reindeer, on the other hand, the female is provided with horns; so that in this species, the horns ought, according to our rule, to appear early in life, long before the two sexes had arrived at maturity and had come to differ much in constitution. In all the other species of deer the horns ought to appear later in life, leading to their development in that sex alone, in which they first appeared in the progenitor of the whole Family. Now in seven species, belonging to distinct sections of the family and inhabiting different regions, in which the stags alone bear horns, I find that the horns first appear at periods varying from nine months after birth in the roebuck to ten or twelve or even more months in the stags of the six other larger species.359 But with the reindeer the case is widely different, for as I hear from Prof. Nilsson, who kindly made special enquiries for me in Lapland, the horns appear in the young animals within four or five weeks after birth, and at the same time in both sexes. So that here we have a structure, developed at a most unusually early age in one species of the family, and common to both sexes in this one species.

  In several kinds of antelopes the males alone are 289provided with horns, whilst in the greater number both sexes have horns. With respect to the period of development, Mr. Blyth informs me that there lived at one time in the Zoological Gardens a young koodoo (Ant. strepsiceros), in which species the males alone are horned, and the young of a closely-allied species, viz. the eland (Ant. oreas), in which both sexes are horned. Now in strict conformity with our rule, in the young male koodoo, although arrived at the age of ten months, the horns were remarkably small considering the size ultimately attained by them: whilst in the young male eland, although only three months old, the horns were already very much larger than in the koodoo. It is also worth notice that in the prong-horned antelope,360 in which species the horns, though present in both sexes, are almost rudimentary in the female, they do not appear until about five or six months after birth. With sheep, goats, and cattle, in which the horns are well developed in both sexes, though not quite equal in size, they can be felt, or even seen, at birth or soon afterwards.361 Our rule, however, fails in regard to some breeds of sheep, for instance merinos, in which the rams alone are horned; for I cannot find on enquiry,362 that 290the horns are developed later in life in this breed than in ordinary sheep in which both sexes are horned. But with domesticated sheep the presence or absence of horns is not a firmly fixed character; a certain proportion of the merino ewes bearing small horns, and some of the rams being hornless; whilst with ordinary sheep hornless ewes are occasionally produced.

  In most of the species of the splendid family of the Pheasants, the males differ conspicuously from the females, and they acquire their ornaments at a rather late period of life. The eared pheasant (Crossoptilon auritum), however, offers a remarkable exception, for both sexes possess the fine caudal plumes, the large ear-tufts and the crimson velvet about the head; and I find on enquiry in the Zoological Gardens that all these characters, in accordance with our rule, appear very early in life. The adult male can, however, be distinguished from the adult female by one character, namely by the presence of spurs; and conformably with our rule, these do not begin to be developed, as I am assured by Mr. Bartlett, before the age of six months, and even at this age, can hardly be distinguished in the two sexes.363 The male and female Peacock differ con291spicuously from each other in almost every part of their plumage, except in the elegant head-crest, which is common to both sexes; and this is developed very early in life, long before the other ornaments which are confined to the male. The wild-duck offers an analogous case, for the beautiful green speculum on the wings is common to both sexes, though duller and somewhat smaller in the female, and it is developed early in life, whilst the curled tail-feathers and other ornaments peculiar to the male are developed later.364 Between such extreme cases of close sexual resemblance and wide dissimilarity, as those of the Crossoptilon and peacock, many intermediate ones could be given, in which the characters follow in their order of development our two rules.

  As most insects emerge from their pupal state in a mature condition, it is doubtful whether the period of development determines the transference of their characters to one or both sexes. But we do not know that the coloured scales, for instance, in two species of butterflies, in one of which the sexes differ in colour, whilst in the other they are alike, are developed at the same relative age in the cocoon. Nor do we know whether all the scales are simultaneously developed on the wings 292of the same species of butterfly, in which certain coloured marks are confined to one sex, whilst other marks are common to both sexes. A difference of this kind in the period of development is not so improbable as it may at first appear; for with the Orthoptera, which assume their adult state, not by a single metamorphosis, but by a succession of moults, the young males of some species at first resemble the females, and acquire their distinctive masculine characters only during a later moult. Strictly analogous cases occur during the successive moults of certain male crustaceans.

  We have as yet only considered the transference of characters, relatively to their period of development, with species in a natural state; we will now turn to domesticated animals; first touching on monstrosities and diseases. The presence of supernumerary digits, and the absence of certain phalanges, must be determined at an early embryonic period—the tendency to profuse bleeding is at least congenital, as is probably colour-blindness—yet these peculiarities, and other similar ones, are often limited in their transmission to one sex; so that the rule that characters which are developed at an early period tend to be transmitted to both sexes, here wholly fails. But this rule, as before remarked, does not appear to be nearly so generally true as the converse proposition, namely, that characters which appear late in life in one sex are transmitted exclusively to the same sex. From the fact of the above abnormal peculiarities becoming attached to one sex. long before the sexual functions are active, we may infer that there must be a difference of some kind between the sexes at an extremely early age. With respect to sexually-limited diseases, we know too little of the period at which they originate, to draw any fair conclusion. Gout, however, seems to fall under293 our rule; for it is generally caused by intemperance after early youth, and is transmitted from the father to his sons in a much more marked manner than to his daughters.

  In the various domestic breeds of sheep, goats, and
cattle, the males differ from their respective females in the shape or development of their horns, forehead, mane, dewlap, tail, and hump on the shoulders; and these peculiarities, in accordance with our rule, are not fully developed until rather late in life. With dogs, the sexes do not differ, except that in certain breeds, especially in the Scotch deer-hound, the male is much larger and heavier than the female; and as we shall see in a future chapter, the male goes on increasing in size to an unusually late period of life, which will account, according to our rule, for his increased size being transmitted to his male offspring alone. On the other hand, the tortoise-shell colour of the hair, which is confined to female cats, is quite distinct at birth, and this case violates our rule. There is a breed of pigeons in which the males alone are streaked with black, and the streaks can be detected even in the nestlings; but they become more conspicuous at each successive moult, so that this case partly opposes and partly supports the rule. With the English Carrier and Pouter pigeon the full development of the wattle and the crop occurs rather late in life, and these characters, conformably with our rule, are transmitted in full perfection to the males alone. The following cases perhaps come within the class previously alluded to, in which the two sexes have varied in the same manner at a rather late period of life, and have consequently transferred their new characters to both sexes at a corresponding late period; and if so, such cases are not opposed to our rule. Thus there are sub-breeds of the pigeon, described by Neumeis294ter,365 both sexes of which change colour after moulting twice or thrice, as does likewise the Almond Tumbler; nevertheless these changes, though occurring rather late in life, are common to both sexes. One variety of the Canary-bird, namely the London Prize, offers a nearly analogous case.