With the breeds of the Fowl the inheritance of various characters by one sex or by both sexes, seems generally determined by the period at which such characters are developed. Thus in all the many breeds in which the adult male differs greatly in colour from the female and from the adult male parent-species, he differs from the young male, so that the newly acquired characters must have appeared at a rather late period of life. On the other hand with most of the breeds in which the two sexes resemble each other, the young are coloured in nearly the same manner as their parents, and this renders it probable that their colours first appeared early in life. We have instances of this fact in all black and white breeds, in which the young and old of both sexes are alike; nor can it be maintained that there is something peculiar in a black or white plumage, leading to its transference to both sexes; for the males alone of many natural species are either black or white, the females being very differently coloured. With the so-called Cuckoo sub-breeds of the fowl, in which the feathers are transversely pencilled with dark stripes, both sexes and the chickens are coloured in nearly the same manner. The laced plumage of the Sebright bantam is the same in both sexes, and in the chickens the feathers are tipped with black, which makes a near approach to lacing. Spangled Hamburghs, however, offer a partial exception, 295for the two sexes, though not quite alike, resemble each other more closely than do the sexes of the aboriginal parent-species, yet they acquire their characteristic plumage late in life, for the chickens are distinctly pencilled. Turning to other characters besides colour: the males alone of the wild parent-species and of most domestic breeds possess a fairly well developed comb, but in the young of the Spanish fowl it is largely developed at a very early age, and apparently in consequence of this it is of unusual size in the adult females. In the Game breeds pugnacity is developed at a wonderfully early age, of which curious proofs could be given; and this character is transmitted to both sexes, so that the hens, from their extreme pugnacity, are now generally exhibited in separate pens. With the Polish breeds the bony protuberance of the skull which supports the crest is partially developed even before the chickens are hatched, and the crest itself soon begins to grow, though at first feebly;366 and in this breed a great bony protuberance and an immense crest characterise the adults of both sexes.
Finally, from what we have now seen of the relation which exists in many natural species and domesticated races, between the period of the development of their characters and the manner of their transmission—for example the striking fact of the early growth of the horns in the reindeer, in which both sexes have horns, in comparison with their much later growth in the other species in which the male alone bears horns—we may conclude that one cause, though not the sole 296cause, of characters being exclusively inherited by one sex, is their development at a late age. And secondly, that one, though apparently a less efficient, cause of characters being inherited by both sexes is their development at an early age, whilst the sexes differ but little in constitution. It appears, however, that some difference must exist between the sexes even during an early embryonic period, for characters developed at this age not rarely become attached to one sex.
Summary and concluding remarks.—From the foregoing discussion on the various laws of inheritance, we learn that characters often or even generally tend to become developed in the same sex, at the same age, and periodically at the same season of the year, in which they first appeared in the parents. But these laws, from unknown causes, are very liable to change. Hence the successive steps in the modification of a species might readily be transmitted in different ways; some of the steps being transmitted to one sex, and some to both; some to the offspring at one age, and some at all ages. Not only are the laws of inheritance extremely complex, but so are the causes which induce and govern variability. The variations thus caused are preserved and accumulated by sexual selection, which is in itself an extremely complex affair, depending, as it does, on ardour in love, courage, and the rivalry of the males, and on the powers of perception, taste, and will of the female. Sexual selection will also be dominated by natural selection for the general welfare of the species. Hence the manner in which the individuals of either sex or of both sexes are affected through sexual selection cannot fail to be complex in the highest degree.
When variations occur late in life in one sex, and are297 transmitted to the same sex at the same age, the other sex and the young are necessarily left unmodified. When they occur late in life, but are transmitted to both sexes at the same age, the young alone are left unmodified. Variations, however, may occur at any period of life in one sex or in both, and be transmitted to both sexes at all ages, and then all the individuals of the species will be similarly modified. In the following chapters it will be seen that all these cases frequently occur under nature.
Sexual selection can never act on any animal whilst young, before the age for reproduction has arrived. From the great eagerness of the male it has generally acted on this sex and not on the females. The males have thus become provided with weapons for fighting with their rivals, or with organs for discovering and securely holding the female, or for exciting and charming her. When the sexes differ in these respects, it is also, as we have seen, an extremely general law that the adult male differs more or less from the young male; and we may conclude from this fact that the successive variations, by which the adult male became modified, cannot have occurred much before the age for reproduction. How then are we to account for this general and remarkable coincidence between the period of variability and that of sexual selection,—principles which are quite independent of each other? I think we can see the cause: it is not that the males have never varied at an early age, but that such variations have commonly been lost, whilst those occurring at a later age have been preserved.
All animals produce more offspring than can survive to maturity; and we have every reason to believe that death falls heavily on the weak and inexperienced young. If then a certain proportion of the offspring298 were to vary at birth or soon afterwards, in some manner which at this age was of no service to them, the chance of the preservation of such variations would be small. We have good evidence under domestication how soon variations of all kinds are lost, if not selected. But variations which occurred at or near maturity, and which were of immediate service to either sex, would probably be preserved; as would similar variations occurring at an earlier period in any individuals which happened to survive. As this principle has an important bearing on sexual selection, it may be advisable to give an imaginary illustration. We will take a pair of animals, neither very fertile nor the reverse, and assume that after arriving at maturity they live on an average for five years, producing each year five young. They would thus produce 25 offspring; and it would not, I think, be an unfair estimate to assume that 18 or 20 out of the 25 would perish before maturity, whilst still young and inexperienced; the remaining seven or five sufficing to keep up the stock of mature individuals. If so, we can see that variations which occurred during youth, for instance in brightness, and which were not of the least service to the young, would run a good chance of being utterly lost. Whilst similar variations, which occurring at or near maturity in the comparatively few individuals surviving to this age, and which immediately gave an advantage to certain males, by rendering them more attractive to the females, would be likely to be preserved. No doubt some of the variations in brightness which occurred at an earlier age would by chance be preserved, and eventually give to the male the same advantage as those which appeared later; and this will account for the young males commonly partaking to a certain extent (as may be observed with many birds) of the bright colours of their299 adult male parents. If only a few of the successive variations in brightness were to occur at a late age, the adult male would be only a little brighter than the young male; and such cases are common.
In this illustration I have assumed that the young varied in a manner which was of no service to them; but many characters proper to the adult male woul
d be actually injurious to the young,—as bright colours from making them conspicuous, or horns of large size from expending much vital force. Such variations in the young would promptly be eliminated through natural selection. With the adult and experienced males, on the other hand, the advantage thus derived in their rivalry with other males would often more than counterbalance exposure to some degree of danger. Thus we can understand how it is that variations which must originally have appeared rather late in life have alone or in chief part been preserved for the development of secondary sexual characters; and the remarkable coincidence between the periods of variability and of sexual selection is intelligible.
As variations which give to the male an advantage in lighting with other males, or in finding, securing, or charming the female, would be of no use to the female, they will not have been preserved in this sex either during youth or maturity. Consequently such variations would be extremely liable to be lost; and the female, as far as these characters are concerned, would be left unmodified, excepting in so far as she may have received them by transference from the male. No doubt if the female varied and transferred serviceable characters to her male offspring, these would be favoured through sexual selection; and then both sexes would thus far be modified in the same manner. But I shall hereafter have to recur to these more intricate contingencies.
300In the following chapters, I shall treat of the secondary sexual characters in animals of all classes, and shall endeavour in each case to apply the principles explained in the present chapter. The lowest classes will detain us for a very short time, but the higher animals, especially birds, must be treated at considerable length. It should be borne in mind that for reasons already assigned, I intend to give only a few illustrative instances of the innumerable structures by the aid of which the male finds the female, or, when found, holds her. On the other hand, all structures and instincts by which the male conquers other males, and by which he allures or excites the female, will be fully discussed, as these are in many ways the most interesting.
Supplement on the proportional numbers of the two sexes in animals belonging to various classes.
As no one, as far as I can discover, has paid attention to the relative numbers of the two sexes throughout the animal kingdom, I will here give such materials as I have been able to collect, although they are extremely imperfect. They consist in only a few instances of actual enumeration, and the numbers are not very large. As the proportions are known with certainty on a large scale in the case of man alone, I will first give them, as a standard of comparison.
Man.—In England during ten years (from 1857 to 1866) 707,120 children on an annual average have been born alive, in the proportion of 104.5 males to 100 females. But in 1857 the male births throughout England were as 105.2, and in 1865 as 104.0 to 100. Looking to separate districts, in Buckinghamshire (where on an average 5000 children are annually born)301 the mean proportion of male to female births, during the whole period of the above ten years, was as 102.8 to 100; whilst in N. Wales (where the average annual births are 12,873) it was as high as 106.2 to 100. Taking a still smaller district, viz., Rutlandshire (where the annual births average only 739), in 1864 the male births were as 114.6, and in 1862 as 97.0 to 100; but even in this small district the average of the 7385 births during the whole ten years was as 104.5 to 100; that is in the same ratio as throughout England.367 The proportions are sometimes slightly disturbed by unknown causes; thus Prof. Faye states “that in some districts of Norway there has been during a decennial period a steady deficiency of boys, whilst in others the opposite condition has existed.” In France during forty-four years the male to the female births have been as 106.2 to 100; but during this period it has occurred five times in one department, and six times in another, that the female births have exceeded the males. In Russia the average proportion is as high as 108.9 to 100.368 It is a singular fact that with Jews the proportion of male births is decidedly larger than with Christians: thus in Prussia the proportion is as 113, in Breslau as 114, and in Livonia as 120 to 100; the Christian births in these countries being the same as usual, for instance, in Livonia as 104 to 100.369 It is a still more singular fact that in different nations, under different conditions and climates, in Naples, Prussia, Westphalia, France and England, the 302excess of male over female births is less when they are illegitimate than when legitimate.370
In various parts of Europe, according to Prof. Faye and other authors, “a still greater preponderance of males would be met with, if death struck both sexes in equal proportion in the womb and during birth. But the fact is, that for every 100 still-born females, we have in several countries from 134.6 to 144.9 still-born males.” Moreover during the first four or five years of life more male children die than females; “for example in England, during the first year, 126 boys die for every 100 girls,—a proportion which in France is still more unfavourable.”371 As a consequence of this excess in the death-rate of male children, and of the exposure of men when adult to various dangers, and of their tendency to emigrate, the females in all old-settled countries, where statistical records have been kept,372 are found to preponderate considerably over the males.
It has often been supposed that the relative ages of the parents determine the sex of the offspring; and Prof. Leuckart373 has advanced what he considers 303sufficient evidence, with respect to man and certain domesticated animals, to shew that this is one important factor in the result. So again the period of impregnation has been thought to be the efficient cause; but recent observations discountenance this belief. Again, with mankind polygamy has been supposed to lead to the birth of a greater proportion of female infants; but Dr. J. Campbell374 carefully attended to this subject in the harems of Siam, and he concludes that the proportion of male to female births is the same as from monogamous unions. Hardly any animal has been rendered so highly polygamous as our English race-horses, and we shall immediately see that their male and female offspring are almost exactly equal in number.
Horses.—Mr. Tegetmeier has been so kind as to tabulate for me from the ‘Racing Calendar’ the births of race-horses during a period of twenty-one years, viz. from 1846 to 1867; 1849 being omitted, as no returns were that year published. The total births have been 25,560,375 consisting of 12,763 males and 12,797 females, or in the proportion of 99.7 males to 100 females. As these numbers are tolerably large, and as they are drawn from all parts of England, during several years, we may with much confidence conclude that with the domestic horse, or at least with the race-horse, the two sexes are produced in almost equal numbers. The fluctuations in the proportions during successive years are closely like those which occur with mankind, when a small and thinly-populated area is considered: thus in 1856 the male horses were as 107.1, and in 1867 as only 92.6 to 100 females. In the tabulated returns the proportions vary in cycles, for the males exceeded the females during six successive years; and the females exceeded the males during two 304periods each of four years: this, however, may be accidental; at least I can detect nothing of the kind with man in the decennial table in the Registrar’s Report for 1866. I may add that certain, mares, and this holds good with certain cows and with women, tend to produce more of one sex than of the other; Mr. Wright of Yeldersley House, informs me that one of his Arab mares, though put seven times to different horses, produced seven fillies.
Dogs.—During a period of twelve years, from 1857 to 1868, the births of a large number of greyhounds, throughout England, have been sent to the ‘Field’ newspaper; and I am again indebted to Mr. Tegetmeier for carefully tabulating the results. The recorded, births have been 6878, consisting of 3605 males and 3273 females, that is, in the proportion of 110.1 males to 100 females. The greatest fluctuations occurred in 1864, when the proportion was as 95.3 males, and in 1867, as 116.3 males to 100 females. The above average proportion of 110.1 to 100 is probably nearly correct in the case of the greyhound, but whether it would hold with other domesticated breeds is in some degree doubtful. Mr. Cupples has enquire
d from several great breeders of dogs, and finds that all without exception believe that females are produced in excess; he suggests that this belief may have arisen from females being less valued and the consequent disappointment producing a stronger impression on the mind.
Sheep.—The sexes of sheep are not ascertained by agriculturists until several months after birth, at the period when the males are castrated; so that the following returns do not give the proportions at birth. Moreover, I find that several great breeders in Scotland, who annually raise some thousand sheep, are firmly convinced that a larger proportion of males than of females die during the first one or two years; therefore the proportion of males would be somewhat greater at birth than at the age of castration. This is a remarkable coincidence with what occurs, as we have seen, with mankind, and both cases probably depend on some common cause. I have received returns from four gentlemen in England who have bred lowland sheep, chiefly Leicesters, during the last ten or sixteen years; they amount altogether to 8965 births, consisting of 4407 males and 4558 females; that is in the proportion of 96.7 males to 100 females. With respect to Cheviot and black-faced sheep bred in Scotland, I have received returns from six breeders, two of them on a large scale, chiefly for the years 1867-1869, but some of the returns extending back to 1862. The total number recorded amounts to 50,685, consisting of 25,071 males and 25,614 females, or in the proportion of 97.9 males to 100 females. If we take the English and Scotch returns together, the total number amounts 305to 59,650, consisting of 29,478 males and 30,172 females, or as 97·7 to 100. So that with sheep at the age of castration the females are certainly in excess of the males; but whether this would hold good at birth is doubtful, owing to the greater liability in the males to early death.376