microbivores (robotic macrophages), 254, 306
microbots, 333
MicroCHIPS, 242–243
microfluidic devices, 242
microprocessors, 116, 119
clock speed of, 61, 63, 66
cost per transistor cycle of, 62, 62, 66
performance in MIPS of, 64–65, 64, 66
transistors per, 63, 63, 498n
microscopes, 47–48, 163
atomic-force (AFM), 138, 237, 536n
scanning probe (SPM), 237, 240
Microsoft, 284, 286–287
Microsoft Word, 147, 538n
microtubules, 383, 429, 449–452
Microvision, 586n
microwaves, 165, 247, 250, 343
midbrain, 193
Miles, J. B., 515n
military:
AI used by, 259, 279–280, 281, 284
development times reduced in, 334
nanobots used by, 300, 333, 400
robots, 189, 280, 285, 331–332, 333
virtual reality used by, 312, 335, 586n
warfare and, 330–335
see also weapons
military manuals, 594n
Milky Way galaxy, 342–348, 590n
Miller, Arthur, 376, 593n
Miller, E. K., 542n
Miller, Mark, 598n
Miller, Max, 21
Miller, Steve, 175
MIMD (multiple instruction multiple data) architectures, 120
mind, 143, 444
Church-Turing thesis and, 454
expansion of, 316–317
growth of, 324
longevity of, 325, 329
Mind Children (Moravec), 24
“Minds, Brains, and Science” (Searle), 458
“Minds, Machines, and Gödel” (Lucas), 259, 376
miniaturization, 245, 407, 411
law of accelerating returns and, 42–43, 45, 57–61, 57–60, 60, 73, 82–84, 82–84, 96, 102
military and, 332, 334, 335
price-performance of electronics and, 111–112, 526n
shrinking transistors and, 42–43, 45, 61, 76, 111–112, 113, 351, 434
see also nanobots; nanotechnology
minimax algorithm, 275–277
Minsky, Marvin, 156, 177, 189, 202, 203, 228, 260, 289, 473, 497n, 539n, 570n, 582n
Minteer, Shelley, 565n
mirror system hypothesis, 190
missiles, 423
cruise, 255, 279–280, 335
guidance for, 255, 276, 279–280
MIT, 157, 285, 337
Artificial Intelligence Laboratory of, 264
Institute for Soldier Nanotechnologies at, 332
Media Lab, 113, 221
Open Courseware of (OCW), 336
visual processing studies at, 186, 194
mitochondria, 219–220, 583n
Mobile Robot Laboratory, 529n
model constraints, 152
modernity, 387
Modis, Theodore, 19, 501n–503n, 507n
Mohan, Anuj, 547n
molecular assemblers, 228–231, 261
molecular circuits, 27
molecular computing, see three-dimensional molecular computing
molecular manufacturing, 11, 13, 226–231, 242, 250, 258, 422, 434, 457, 557n–558n
body changes and, 310, 324, 372
cost of, 230–231, 338–339, 340
energy efficiency of, 245, 340
Foresight guidelines for, 418–419
goal of, 234
molecular assemblers and, 228–231, 261
safeguards for, 400
software design for, 231
molecular photography technique, 119
molecules, 14, 16, 85, 131, 383, 499n
AGEs and, 220
brain uploading and, 199–200
“chaperone,” 209
design of, 483
in gas, 168
in ice chips vs. cup of water, 510n
nanobots and, 28
money, 478
monkeys, 186, 193
Montemagno, Carlo, 234, 516n, 560n, 561n, 585n
moon, energy harvesting on, 246
Moore, Gordon E., 56, 111–112, 485, 512n, 513n, 526n
Moore, Patrick, 391, 414, 415, 598n, 601n
Moore, T. B., 552n
Moore’s Law, 35–36, 41–42, 56–72, 76, 114
criticism of, 66, 111–112
as fifth paradigm, 41, 66–72, 67, 72, 112
semiconductor feature size reduction and, 57–66, 57–65, 434
moral intelligence, 8, 192
morality, 369, 374–375, 379
Moravec, Hans, 148, 290, 464, 504n, 513n, 514n, 531n, 547n, 582n, 601n
brain computational capacity estimated by, 123, 529n
on evolution of computer power/cost, 68, 69, 122
image processing and, 123, 187–188
robotics and, 24, 122, 123, 187–188, 205, 285
More, Max, 262, 369, 371, 373, 510n, 569n, 593n, 596n
Moreau, René, 513n
Morgenstern, Oskar, 499n
Morris, Michael S., 355–356, 592n
Morris, Tom, 485
mortgage applications, 284
Moshfegh, Allen, 333, 589n
motion, 145
Brownian, 254, 388, 520n, 570n
detection of, 123, 156, 188, 547n
digital basis for, 86
of nanobots, 254
motor cortex, 175
motor neurons, 166, 180–181
motor skills, brain region for, 173
Mottaghy, F. M., 540n
mousepox, 398
movies:
downloading of, 339–340
eye’s extraction of, 186–187, 187
see also specific movies
Moving Object and Transient Event Search System (MOTESS), 281
MP3 files, decoding of, 276
MP3 players, 312
MRAM (magnetic random-access memory), 119
MT (visual area), 185
Muggeridge, Malcolm, 372
multielectrode recording, 163
multiple sclerosis, 308, 555n
multiple universes (parallel multiverses; “bubbles”), 15, 360, 362, 390, 499n–500n
multiplication, neurons’ performing of, 155–156
Mumford, D., 547n
Murakami, Shuichi, 530n
muscles, 191, 210, 232, 552n
cerebellum and, 179, 181, 260
virtual reality and, 314
Musgrave, Charles B., 562n, 563n
music, musician(s), 145, 191, 194, 202, 498n
as analog vs. digital phenomenon, 519n
author’s father as, 327, 339, 497n
of bands of cells, 297
brain plasticity and, 174, 176
downloading of, 100, 339
imagining of, 379
as knowledge, 372, 375
live performances by, 340
pattern and, 388
virtual reality and, 312
music players, 473
Mussa-Ivaldi, Ferdinando, 189
mutations, 46, 219
genetic algorithms and, 270, 539n
in human evolution, 42, 92, 208, 506n, 539
mitochondrial, 219–220
protein and, 553n
Mutschler, Ann Steffora, 526n
mutual assured destruction, 402, 421
MYCIN system, 266–267
MYH1 gene, 506n
Naam, Ramez, 299
Nagaosa, Naoto, 118–119, 530n
nanobots, 28, 32, 33, 201, 232–238, 252
in biomass, 399–400, 425–426
in blood, 248, 253–257, 300, 303, 317, 377, 432, 472
blood-brain barrier and, 163–165
as brain extenders, 317
brain scanning with, 163–167, 197, 200, 262, 293
colonies of, 352–353
control of, 255, 406–407
defined, 163
in digestive system, 303–305
DNA, 236
in Drexler’s molecular assembler, 229–230, 231, 236–238
energy and, 246, 248, 249
fat and sticky fingers problem and, 236–238
foglets, 28, 29, 33, 310, 325, 506n
GNR age impact and, 302–307, 352–353, 358, 398–400, 403, 409
human longevity and, 325
military’s use of, 300, 333, 400
programmable, 317
self-replication of, 232, 237, 256, 352, 398–400, 403, 409, 411–412, 416, 425–426
software viruses and, 406–407
strong AI and, 261–262
virtual reality and, 28, 29, 310, 313–317, 319, 377
wireless communications used by, 163, 233, 303, 304, 316
nanocatalysts, 246, 252
nanocomputing, 139, 232–236, 233, 412
limits of, 133–135, 349
nanoelectromechanical systems (NEMS), 309
nanofactories, 245, 340, 425
nanofilters, 246, 252
nanogrids, 117
nanolayers, 251
Nano Letters, 113–114
nanoparticles, 242–243, 250–253
military’s use of, 332, 335
with recognition proteins, 583n
nanostructures, 251
Nanosys, 250
Nanosystems (Drexler), 228, 229–230, 234
nanotags, magnetic, 242
nanotechnology, 4, 27, 28, 84, 111, 141, 205, 206, 221, 226–259, 299–300, 323, 558n–568n
biological assembler and, 231–232
biotechnology compared with, 227, 232, 251, 256, 257, 412
dangers of, 11, 206, 229, 230, 237, 241, 249, 251, 256, 334, 395, 398–400, 403, 408–419, 423
early adopters of, 242–243
economic effects of, 102, 245–246, 249–250, 257
energy based on, 133, 243–250, 340, 395, 397, 430, 434, 457
energy required for, 230, 238, 244, 245, 352
environment and, 229, 230, 250–253, 259
ethical issues and, 229
exponential growth and, 27, 73, 227, 396, 407, 558n
fat and sticky fingers problem and, 236–238
foundations of, 139, 227–231
limits of, 133–135, 138
medicine and, 238, 242–243, 251, 253–255, 259, 300, 303–305, 377, 407
military use of, 300, 332–335
patents for, 84, 84
relinquishment of, 395, 411
in reversal of aging, 372, 373, 397
science citations of, 83, 83
self-replication and, see self-replicating nanotechnology
strong AI and, 261–262, 412, 426
technology hype cycle for, 263–264
thermal effects and, 238
threshold of, 60, 112
transportation and, 230, 246, 247, 252, 457–458
wealth creation from, 13, 107, 396–397
see also molecular manufacturing
Nanotherapeutics, 243
nanotubes and nanotube circuitry, 27, 112–115, 122, 247, 248, 526n–528n, 558n
carbon, 27, 113, 114, 229, 230, 234–235, 238, 246, 250, 375, 527n
environmental applications of, 251, 253
self-assembly in, 112–113, 115–116, 528n
nanoweapons, 300, 334–335
nanowires, 117, 121
Nantero, 114–115
narrow AI:
applications for, 276, 279–289, 293
defined, 92, 264
NASA, 24, 116, 235, 250, 280–281, 333
NASDAQ, 284
Nash, Ogden, 391
Nathanson, H. C., 516n
National Cancer Institute, 282
National Nuclear Security Agency, 307, 533n, 585n
natural selection, 21–22, 127, 195
nature:
molecular machines in, 231–232
technology’s emulating of, 146, 149, 479–483
transcendence and, 388, 389
Nedervelde, Philippe Van, 598n
Nehaniv, Chrystopher L., 548n
Nelson, David, 502n
neocortical neurons, 171
Neumann, John von, 10, 227–228, 401, 498n–499n, 558n
kinematic constructor of, 29, 228
neural chips, 188, 195
neural clusters, 168, 197
neural diseases, 304
neural implants, 28, 201, 374, 377, 443, 483
challenge in connection of, 195
nanobots compared with, 317
for Parkinson’s disease, 195, 255, 308, 384, 585n
for retinas, 185, 308, 585n
neural nets, 89, 149, 173, 268–270, 288, 428, 442, 446, 481
algorithmic description of, 269, 570n–574n
backpropagation and, 156
biological, 269–270
business use of, 283
connectionism and, 155, 156
defined, 539n
genetic algorithms combined with, 271, 278–279
McCulloch-Pitts model of, 155, 170
pattern recognition and, 151, 152, 156, 268–269, 271, 461
Perceptron, 574n
neural precursor cells, 177
neural processing, criticism from complexity of, 428–429, 442–450
neurogenesis, 177
neuromorphic electronic systems, 533n
neuromorphic models, 178–194, 197, 308, 316, 440
of auditory regions, 123–124, 147–148, 183–184, 185, 529n, 545n–547n
of cerebellum, 178–183, 180, 182
of hippocampus, 188
of neural regions, 452
of olivocerebellar region, 189
of visual system, 185–188, 187
neuromorphic simulations, 122, 124–125, 438, 440, 527n, 530n
neurons, nervous system, 46, 85, 145, 202, 223, 468–469, 474, 475, 600n
in auditory cortex, 124
biological limitations to, 27, 127, 144
blood flow and, 161
brain modeling and, 4, 172–173, 428, 443, 452, 455
brain reverse engineering and, 163–167, 440, 444, 530n
building of, 111
change of, 325, 383
chaotic computing and, 173
chip compared with, 530n, 538n
complexity of, 143–144, 153, 155, 197, 455
damage to, 173, 308
design of, 153
early models of, 154–157, 169
electronic, 173
excitatory vs. inhibitory, 157
feedforward sequence of, 154, 170
firing of, 147, 150, 155, 162, 170, 173, 176, 269, 313, 446
formation of, 177
Hebb’s learning theories for, 156–157, 170–171
of human vs. nonhuman primates, 506n
information in, 15, 16, 127
information processing times and, 8–9, 26, 27, 71, 503n, 504n, 505n
loss of, 152, 293
measurement of electrical output of, 154
membrane of, 442–443
motor, 166, 180–181
nanobots’ interaction with, 28, 165–166, 300, 319, 377
personality and, 200
plasticity of, 171–172
quantum computing and, 429, 450–452
response time of, 172
in retina, 123
as self-organizing, 151, 538n
simplicity of, 143–144
simulation of, 268–269, 455
stabilization time of, 150
subcellular components vs., 169–170
virtual reality from within, 28, 29, 165, 300, 377
see also axons; dendrites; soma; spines; synapses
neuron transistors, 308, 313
neuroscience, 154, 168–169
neurotransmitters, 153, 163, 199, 257, 378, 430
in analog domain, 147, 149
defined, 145
information and, 47
memory and, 127, 137, 329, 523n
patterns of, 260, 317, 337, 440, 445, 463
in synapses, 145, 147, 153, 170
neutrons, 14
newborns, 152, 193
Newburger, Eric C., 511n
Newell, Allen, 264, 273, 569n
New Kind of Science, A (Wolfram), 85, 90, 519n
Newton, Isaac, 473, 485
Newtonian physics, 520n
Ng, Y. Jack, 342, 590n
Nicolaescu, Roxana, 567n
Nicolelis, Miguel, 194–195
Niehaus, Ed, 598n
Nietzsche, Friedrich Wilhelm, 373, 374, 475
911 emergency systems, 255, 413
Ningaraj, Nagendra S., 541n
Nippon Telegraph and Telephone Corporation (NTT), 113
Nishizawa, Matsuhiko, 565n
Nissen, S. E., 554n
nitric oxide, transmembrane diffusion of, 170, 446
nitrogen, 551n
Nixon, Richard M., 391
NMDA receptors, 383
Nobel, Alfred, 404
noise, 38
Nomad for Military Applications, 586n
nonbiological experience, transformation to, 324–326
nonbiological intelligence:
change in meaning of, 311
concern about, 30
consciousness of, 376–380, 385, 475
design and architecture freedom of, 26, 27, 31
emotional, 28–29, 145, 377–379, 385
energy and matter saturated by, 15, 21, 29, 45, 364, 375, 389, 511n
exponential growth of, 257, 300, 316, 377, 407
feedback cycle of, 28
as human, 3, 317, 409
in human brain, 28, 201–202, 377, 472
knowledge sharing and, 20, 26, 145, 202–203, 260
merger of biological intelligence with, 4, 9, 24, 25, 47, 123, 128, 197, 296, 300, 316–317, 337, 340, 372, 375–376, 377, 424
prevalence of, 226, 309, 335, 350, 352, 375, 377
silicon vs. carbon, 375
speed of, 26, 27
spiritual experiences of, 377
strengths of, 26, 27
Turing test and, see Turing test
see also artificial intelligence
nonlinearity:
in neuronal information processing, 124, 137, 138, 148, 150–151, 155, 197, 428, 442, 452, 503n, 527n
as requirement for self-organizing system, 155
nonsexual reproduction, 46
“nor” gate, 94, 523n
notebook computers, 64–65, 247
Notebooks (Butler), 96
“Note for Physicists” (Wolfram), 519n, 521n
Novamente architecture, 279
Nowatzyk, Andreas, 161
nuclear energy, 20
natural, 139–140, 503n
nuclear reactors, 243, 252
power plants, 255, 420
nuclear war, 401
nuclear-waste management, 252
nuclear weapons, 397–398, 401–402, 423
atomic bomb, 392–393, 404, 408, 594n
proliferation of, 393, 401–402, 426
nucleic acids, 47, 423
nucleotides, 207
nucleus, 198, 208, 219
cloning and, 221–222, 556n
cochlear, 184
genes inserted into, 215, 220, 323